Browse > Article
http://dx.doi.org/10.3741/JKWRA.2008.41.10.969

Application of Proxy-basin Differential Split-Sampling and Blind-Validation Tests for Evaluating Hydrological Impact of Climate Change Using SWAT  

Son, Kyong-Ho (Institute of Water and Environment, Korea Water Resources Corporation)
Kim, Jeong-Kon (Korea Institute of Water and Environment, Korea Water Resources Corporation)
Publication Information
Journal of Korea Water Resources Association / v.41, no.10, 2008 , pp. 969-982 More about this Journal
Abstract
As hydrological models have been progressively developed, they are recognized as appropriate tools to manage water resources. Especially, the need to evaluate the effects of landuse and climate change on hydrological phenomena has been increased, which requires powerful validation methods for the hydrological models to be employed. As measured streamflow data at many locations may not be available, or include significant errors in application of hydrological models, streamflow data simulated by models only might be used to conduct hydrological analysis. In many cases, reducing errors in model simulations requires a powerful model validation method. In this research, we demonstrated a validation methodology of SWAT model using observed flow in two basins with different physical characteristics. First, we selected two basins, Gap-cheon basin and Yongdam basin located in the Guem River Basin, showing different hydrological characteristics. Next, the methodology developed to estimate parameter values for the Gap-cheon basin was applied for estimating those for the Yongdam basin without calibration a priori, and sought for validation of the SWAT. Application result with SWAT for Yongdam basin showed $R_{eff}$ ranging from 0.49 to 0.85, and $R^{2}$ from 0.49 to 0.84. As well, comparison of predicted flow and measured flow in each subbasin showed reasonable agreement. Furthermore, the model reproduced the whole trends of measured total flow and low flow, though peak flows were rather underestimated. The results of this study suggest that SWAT can be applied for predicting effects of future climate and landuse changes on flow variability in river basins. However, additional studies are recommended to further verify the validity of the mixed method in other river basins.
Keywords
SWAT; Climate change; Proxy-basin differential split-sampling; Blind-validation;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Klemes, V. (1986). "Operational testing of hydrological simulation models." Hydrol. Sci. J., Vol. 31, pp. 13-24   DOI   ScienceOn
2 Mroczkowski, M., Raper, G.P., and Kuczera, G. (1997). "The quest for more powerful validation of conceptual catchment models." Water Resources Research, Vol. 33, pp. 2325-2335   DOI   ScienceOn
3 서동일, 김종성, 유경미 (2005). “토지피복지도를 이용한 비점오염물질 부하량 산정을 위한 SWAT 모형의 적용.” 대한환경공학회 춘계학술연구발표회 논문집, 대한환경공학회, pp. 423-428
4 오경두, 전병호, 양경규, 안원식, 조병호 (2005). “도시지역 CN 산정연구.” 한국수자원학회논문집, 한국수자원학회, 제38권, 제12호, pp. 1009-1020   DOI
5 배덕효, 이병주, 정일원 (2003). “위성영상 피복 분류에 대한 CN값 산정(I): - CN값 산정-.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제6호, pp. 985-997   과학기술학회마을
6 신현석, 강두기 (2006). “SWAT모형을 이용한 인공저류시설물의 하류장기유출 영향분석 기법에 관한 연구.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제164호, pp.227-240   과학기술학회마을   DOI
7 Ewen, J. and Parkin, G. (1996). "Validation of catchment models for predicting land-use and climate change impacts, 1. Method." Journal of Hydrology, Vol. 175, pp. 583-594   DOI   ScienceOn
8 Pitman, W.V. (1978). "Flow generation by catchment models of differing complexity - A comparison of performance." Journal of Hydrology, Vol. 38, pp. 59–70   DOI   ScienceOn
9 Refsgaard J.C. (1997). "Parameterization, calibration and validation of distributed hydrological model." Journal of Hydrology, Vol. 10, pp. 282-290   DOI   ScienceOn
10 Ewen, J. (1995). Contaminant transport component of the catchment modelling system SHETRAN. In: Trudgill, S.T., (Ed.), Solute Modelling in Catchment Systems, Wiley, Chichester, UK, pp. 417-441
11 Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2002). Soil and Water Assessment Tool User's Manual, Version 2000
12 Parkin, G., O''Donnell, G., Ewena, J., Bathursta, J.C., O''Connella, P.E., and Lavabreb. J. (1996). "Validation of catchment models for predicting land-use and climate change impacts, 2. Case study for a Mediterranean catchment." Journal of Hydrology, Vol. 175, pp. 595-613   DOI   ScienceOn
13 김남원, 이정은, 원유승 (2005). “소양강댐 유역에 대한 SWAT 모형의 적용.” 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 628-632   과학기술학회마을
14 Williams, J.R. (1995). Chapter 25. The EPIC Model. p. 909-1000. In Computer Models of Watershed Hydrology. Water Resources Publications. Highlands Ranch, CO
15 Xu, C.-Y. (1999). "Operational testing of a water balance model for predicting climate change impacts." Agric. For. Meteor., Vol. 98-99, pp. 295- 304   DOI   ScienceOn
16 Nash, J. E. and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10. pp. 282-290   DOI   ScienceOn
17 Uhlenbrook, S. and Leibundgut, Ch. (2002). "Processoriented catchment modelling and multipleresponse validation." Hydrological processes, Vol. 16, 423-440   DOI   ScienceOn
18 Uhlenbrook, S., Seibert, J., Leibundgut, Ch., and Rodhe, A. (1999). "Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure." Hydrol. Sci. J. Vol. 44, No. 5, pp. 279-299   DOI   ScienceOn
19 Hooper, R.P., Stone, A., Christophersen, N., de Grosbois, E., and Seip, H.M. (1988). "Assessing the Birkenes model of stream acidification using a multi-signal calibration methodology." Water Resources Research, Vol. 24, pp. 1308-1316   DOI
20 Seibert, J. and McDonnell, J.J. (2002). "On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration." Water Resour. Research., Vol. 38, No. 11, 1241, doi: 10.1029/2001WR000978   DOI   ScienceOn
21 김남원, 이병주, 이정은 (2006). “SWAT 모형을 활용한 갈수량 분석." 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp.780-784   과학기술학회마을
22 Arnold, J.G., Muttiah, R.S., Srinivasan, R., and Allen P.M. (2000). “Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin." Journal of Hydrology, Vol. 227, pp. 21-40   DOI   ScienceOn
23 김익재, 손경호, 김정곤 (2007). “SWAT 모델을 이용한 수변 완충지역에서 비점오염원 저감효율 평가.” 한국수자원학회 학술발표회 논문집, 한국수자원학회   과학기술학회마을
24 김정곤, 손경호, 노준우, 장창래, 고익환 (2006a). “갑천 유역을 대상으로 SWAT 모형의 다 변수 다 지역 검.보정.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제10호, pp. 867-880   과학기술학회마을   DOI
25 김정곤, 손경호, 노준우, 장창래, 고익환 (2006b). "SWAT 모형을 이용한 갑천유역에 대한 수문 특성 분석 및 도시화 영향 평가." 한국수자원학회논문집, 한국수자원학회, 제39권, 제10호, pp. 881-890   과학기술학회마을   DOI
26 Franks, S.W., Gineste, P., Beven, K.J., and Merot, P. (1997). "On constraining the predictions of a distributed model: the incorporation of fuzzy estimates of saturated areas into the calibration process." Water Resources Research, Vol. 34, pp. 789-797
27 Bergstrom, S. and Forsman, A. (1973). “Development of a conceptual deterministic rainfall-runoff model.” Nord. Hydrology, Vol. 4, pp. 147-170   DOI
28 Boyle, D.P., Gupta, H.V., and Sorooshian, S. (2000). “Toward improved calibration of hydrological models: Combining the strengths of manual and automatic methods.” Water Resource Research, Vol. 36, pp. 3663-3674   DOI   ScienceOn