• 제목/요약/키워드: risk prediction system

검색결과 323건 처리시간 0.027초

Keras를 이용한 대기오염이 유해질환에 미치는 위험 예측 시스템 (A Risk Prediction System of Air Pollution Influencing Diseases Utilzing Keras)

  • 이지수;이유정;윤수한;문유진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.11-12
    • /
    • 2022
  • 이 연구는 대기오염과 미세먼지의 각 성분이 질환에 미치는 영향에 대한 데이터만 존재한다면 어떠한 질환이든 위험도 예측 결과를 알 수 있는 것에 의미가 있다. 또한 기존의 대기정보에 따른 정보를 예상하는데 필요한 데이터 종류와 수가 많았으며 계산의 복잡성이 높았고 정보의 제공 범위가 넓었다. 하지만 이 연구는 과거 대기 데이터와 딥러닝을 통해서 낮은 비용으로 더욱 자세하게 유해질환 위험도를 예측하는 시스템을 구축하였다. 이 연구에서 구축한 시스템은 예측 결과 88.9%의 정확도를 보였다. 이 시스템은 입력되는 데이터의 정보에 따라 세분화된 지역의 대기환경 정보 또한 파악 가능하며 그 과정이 매우 간편하고 유용하다. 이 시스템은 공기질 예측을 위해 유용하게 사용될 수 있을 것이라고 사료된다.

  • PDF

철도환경에서의 실시간 이미지 객체인식 및 위험 예측 시스템 설계 (Design of Realtime Image Object Recognition and Risk Prediction System in Railway Environment)

  • 장용헝;오현진;이승신;오염덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.237-240
    • /
    • 2023
  • 본 논문은 철도 건널목(교차로)에서 발생하는 차량, 보행자 및 야생 동물 사고 등의 상황에서 발생하는 위험 요소를 설정하고 철도 건널목(교차로)의 운행상황을 확인할 수 있도록 모형 철도 주변에 유형별 센서들을 설치하고 데이터를 인지하여 시스템에 저장하고, 유효한 데이터 분석을 통해 Orange3 머신러닝 기법을 적용한다. 철도 건널목에 관련된 이미지 중 위험인자로서 차량, 보행자 및 야생동물등의 객체를 감지하고 데이터를 수집하여 활용한다. 또한 이러한 데이터들은 이용자 상황에 맞는 철도 데이터 운영 시스템으로 적용할 수 있도록 위험 예측 시스템을 제안한다.

  • PDF

부도예측 개선을 위한 하이브리드 언더샘플링 접근법 (A Hybrid Under-sampling Approach for Better Bankruptcy Prediction)

  • 김태훈;안현철
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.173-190
    • /
    • 2015
  • 부도는 막대한 사회적, 경제적 손실을 야기할 수 있으므로, 미리 부도여부를 정확하게 예측하여 선제 대응하는 것은 경영분야에서 대단히 중요한 의사결정문제 중 하나이다. 이에 지능정보시스템 분야에서도 그간 기업의 재무 데이터에 기반해 부도예측을 개선하기 위한 노력을 기울여왔는데, 안타깝게도 기존의 연구들은 대부분 분류모형의 성능 개선을 통해 예측 정확도를 개선하는 것에만 주로 초점을 맞추어 다른 요소들을 충분히 고려하지 못했다는 한계가 있다. 이러한 배경에서 본 연구는 부도예측 모형의 정확도를 개선하기 위한 방편으로 새로운 데이터 전처리 방법, 그 중에서도 효과적인 표본추출 방법을 제안하고자 한다. 일반적으로 부도예측을 위해 사용되는 데이터들은 극심한 데이터 불균형 문제에 노출되어 있는데, 본 연구에서는 k-reverse nearest neighbor(k-RNN)와 one-class support vector machine(OCSVM) 방법을 결합한 하이브리드 언더샘플링(hybrid under-sampling) 접근법을 통해 이같은 데이터 불균형 문제를 해결하고자 하였다. 본 연구에서 제안한 접근법에서 k-RNN은 이상치를 효과적으로 제거할 수 있으며, OCSVM은 다수를 구성하는 등급의 데이터로부터 정보량이 풍부한 표본만 효과적으로 선택할 수 있는 수단으로 활용될 수 있다. 제안된 기법의 성능을 검증하기 위해, 본 연구에서는 국내 한 은행의 비외감기업 부도예측모형 구축에 제안 기법을 적용해 본 뒤, 일반적으로 많이 사용되는 랜덤샘플링(random sampling)과 제안 기법의 성능을 비교해 보았다. 그 결과, 로지스틱 회귀분석, 판별분석, 의사결정나무, SVM 등 대다수의 분류모형에 있어 분류 정확도가 개선됨을 확인할 수 있었으며, 모든 분류모형에 있어 부정 오류, 즉 부실기업을 정상으로 예측하는 오류율이 크게 감소함을 확인할 수 있었다.

해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구 (Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction)

  • 엄대용;이방희
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.100-103
    • /
    • 2023
  • 최근 스마트선박 개발에 발맞춰 정확하고 세밀한 실시간 해양환경 예측정보의 요구가 확대되고 선박에 직접 지원하기 위한 환경이 확보됨에 따라 최적항로 분야에서도 다양한 해양환경을 고려한 정보 생산 및 평가 연구가 필요하다. 스마트선박에서 해양환경의 위험도 및 에너지 소비의 불확실성을 줄이면서 최적항로를 산출할 수 있는 알고리즘은 2단계로 구분하여 개발하였다. 1단계는 해양환경정보들과 선박자동식별시스템(AIS)내에 선박의 위치·상태정보를 결합해 프로파일을 생성하였다. 2단계는 구성한 프로파일 결과를 이용하여 해양환경 에너지맵을 정의할 수 있는 모델을 개발하였고, 약 60만개의 데이터를 반영할 수 있도록 인공지능 머신러닝 기법 중 Random Forest를 적용하여 회귀식을 생성하였다. Random Forest 회귀 모델의 결정계수(R2)는 0.89 를 보였다. 생성한 모델에 2021년 6월 1일~3일의 해양환경 예측정보를 이용하여 Dijikstra 최단경로 알고리즘을 적용해 최적 안전항로를 산출하고 맵에 표출했다. Random Forest 회귀 모델로 산출된 항로는 유선적이고 해양환경 예측정보의 상태를 감안하며 항로를 도출하는 결과를 보였다. 본 연구의 실시간 해양환경 예측정보 기반의 항로 산출 개념은 선박의 이동 경향성을 반영한 현실적이면서 안전한 항로 산출이 가능하고, 향후 경제성, 안전성, 친환경성 평가 모델로 범위로 확대할 수 있을 것으로 기대된다.

  • PDF

도로 터널 스마트관리를 위한 디지털 트윈 및 지능형 레일 로봇 개발 (Development of Digital Twin and Intelligent Monorail Robot for Road Tunnel Smart Management)

  • 손영우;박재홍;김응욱;정영식
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.25-37
    • /
    • 2024
  • The objective of this study was to create intelligent rail robots that are optimized for facility management and implement digital twin systems for smart road tunnel management. An autonomous surveillance system is formed by combining the sensing platform consisting of railing robots, fixed cameras and environmental detection sensors with the digital twin data platform technology for tunnel monitoring and early fire suppression. In order to develop mobile rail robots for fire extinguishing, we also designed and manufactured robots for extinguishing & monitoring and fire extinguishing devices, and then we examined the optimization of all parts. Our next step was to build a digital twin for road tunnel management by developing continuous image display system and implementing 3D modeling. After constructing prototypes, we attempted simulations by configuring abnormal symptom scenarios, such as vehicles fires. This study's proposal proposes high-accuracy risk prediction services that will enable intelligent management of risks in the tunnel with early response at each stage, using the data collected from the intelligent rail robots and digital twin systems.

빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축 (Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics)

  • 조남옥;신경식
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.33-56
    • /
    • 2016
  • 대부분의 부도 예측에 관한 연구는 재무 변수를 중심으로 통계적 방법 또는 인공지능 기법을 적용하여 부도 예측 모형을 구축하였다. 그러나 재무비율과 같은 회계 정보를 이용한 부도 예측 모형은 재무 제표 결산 시점과 신용평가 시점 간 시차를 고려하지 않을 뿐만 아니라 해당 산업의 경제적 상황과 같은 외부 환경적인 요소를 반영하기 어렵다는 한계점이 존재하였다. 기업의 부도 여부를 예측하기 위해 정량 정보인 재무 변수만을 이용하는 것에 한계가 있음에도 불구하고 정성 정보를 부도 예측 모형에 반영한 연구는 아직 미흡한 실정이다. 본 연구에서는 재무 변수를 이용하는 기존 부도 예측 모형의 성과를 개선하기 위해 빅데이터 기반의 정성 정보를 추가적인 입력 변수로 활용하는 부도 예측 모형을 제안하였다. 제안 모형의 성과 향상은 정성 정보를 예측 모형에 통합시키기에 적합한 형태로 정보의 유형을 변환시킬 수 있는가에 따라 달려있다. 이에 본 연구에서는 정성 정보 처리를 위한 방법으로 빅데이터 분석 기법 중 하나인 텍스트 마이닝(Text Mining)을 활용하였다. 해당 산업과 관련된 경제 뉴스 데이터로부터 경제 상황에 대한 감성 정보를 추출하기 위해 도메인 중심의 감성 어휘 사전을 구축하고, 구축된 어휘 사전을 기반으로 감성 분석(Sentiment Analysis)을 수행하였다. 형태소 분석 등을 포함한 텍스트 전처리 과정을 거쳐 감성 어휘를 추출하고, 각 어휘에 대한 극성 및 감성 점수를 부여하였다. 분석 결과, 전통적 부도 예측 모형에 경제 뉴스 데이터에서 도출한 정성 정보를 반영하는 것은 모형의 성과를 개선하는 것으로 나타났다. 특히, 경제 상황에 대한 부정적 감정이 기업의 부도 여부를 예측하는 데 더욱 효과적임을 알 수 있었다.

급배수관망 누수예측을 위한 확률신경망 (Probabilistic Neural Network for Prediction of Leakage in Water Distribution Network)

  • 하성룡;류연희;박상영
    • 상하수도학회지
    • /
    • 제20권6호
    • /
    • pp.799-811
    • /
    • 2006
  • As an alternative measure to replace reactive stance with proactive one, a risk based management scheme has been commonly applied to enhance public satisfaction on water service by providing a higher creditable solution to handle a rehabilitation problem of pipe having high potential risk of leaks. This study intended to examine the feasibility of a simulation model to predict a recurrence probability of pipe leaks. As a branch of the data mining technique, probabilistic neural network (PNN) algorithm was applied to infer the extent of leaking recurrence probability of water network. PNN model could classify the leaking level of each unit segment of the pipe network. Pipe material, diameter, C value, road width, pressure, installation age as input variable and 5 classes by pipe leaking probability as output variable were built in PNN model. The study results indicated that it is important to pay higher attention to the pipe segment with the leak record. By increase the hydraulic pipe pressure to meet the required water demand from each node, simulation results indicated that about 6.9% of total number of pipe would additionally be classified into higher class of recurrence risk than present as the reference year. Consequently, it was convinced that the application of PNN model incorporated with a data base management system of pipe network to manage municipal water distribution network could make a promise to enhance the management efficiency by providing the essential knowledge for decision making rehabilitation of network.

CNN 모델을 활용한 홍수 위험도 판별 시스템 구현 (Implementation of Flood Risk Determination System using CNN Model)

  • 조민우;이태준;송현옥;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.335-337
    • /
    • 2021
  • 홍수 피해는 세계 각지에서 발생하고 있으며, 홍수에 취약한 지역에 사는 사람이 2000년에 비해 25% 증가한 8,600만 명에 이른다. 이러한 홍수는 인명과 재산에 막대한 피해를 남기며, 피해를 줄이기 위해선 적절한 시기에 대피를 결정하는 것이 필수적이다. 홍수를 예상하고 대피하는 것에도 많은 비용이 발생하며, 홍수 예측에 오류가 발생하여 대피하지 않는 경우에는 더 큰 비용이 발생한다. 따라서 본 논문에선 시계열 데이터인 강수량과 수위를 활용하여 적절한 시기에 대피가 이루어질 수 있도록 하기 위한 CNN모델을 활용하여 홍수 위험도 판별 모델을 제안한다. 이를 통해 최적의 대피시기를 결정하여 불필요한 대피를 막고, 적절한 시기에 대피가 이루어질 수 있도록 하는 초기 연구로서 활용할 수 있을 것으로 사료된다.

  • PDF

스티렌 모노머 화재폭발사고 피해예측 분석에 관한 연구 (A study on damage prediction analysis for styrene monomer fire explosion accidents)

  • 최형수;최민제;조규선
    • 산업진흥연구
    • /
    • 제9권2호
    • /
    • pp.37-44
    • /
    • 2024
  • 본 연구는 석유 화학사 생산공장에 설치된 스티렌 모노머 저장 탱크의 화구(fireball)와 증기운 폭발(VCE)에 대한 최악의 시나리오를 선정하고 피해 예측 및 사고영향을 분석하였다. 혼합잔사유 저장 탱크의 주성분인 스티렌 모노머 이상중합반응 시 화구(fireball)와 증기운 폭발(VCE)로 인한 복사열과 과압의 영향 범위는 e-CA 사고 피해 예측 프로그램을 적용하여 정량 분석하였다. 복사열과 폭발 과압의 피해 영향 범위는 각 최대 반경 1,150m와 626m로 분석된다. 복사열 4kW/m2이 미치는 1,150m 이내 사람은 20초 동안 노출 시 피부가 부풀어 오를 수 있다. 폭발 과압 21kPa이 미치는 626m 이내 건축물은 철 구조물의 손상과 기초에서 이탈될 수 있고, 사람은 신체 부상할 수 있다. 화재, 폭발 또는 누출 사고 발생 시 복사열, 과압에 의한 사업장 내 근로자, 인근 주민 또는 주변 시설물 등의 위험 정도와 수용 여부 위험 기준을 판단하고, 취급 물질 유해·위험성 파악, 비상대응체계 구축, 개선 및 투자 활동 등을 통해 사업장 피해 최소화 대책을 수립하는 데 도움이 될 것으로 기대한다.

장단기 기억 신경망을 활용한 선박교통 해양사고 패턴 분석 및 예측 (Analysis and Prediction Methods of Marine Accident Patterns related to Vessel Traffic using Long Short-Term Memory Networks)

  • 장다운;김주성
    • 해양환경안전학회지
    • /
    • 제28권5호
    • /
    • pp.780-790
    • /
    • 2022
  • 해양사고 예방을 위해서는 사고의 원인과 결과에 대한 분석 및 진단뿐만 아니라, 사고의 발생 패턴과 변화 추이를 예측함으로써 정량적 위험도를 제시할 필요성이 있다. 선박교통과 관련된 해양사고 예측은 선박의 충돌위험도 분석 및 항해 경로 탐색 등 선박교통의 흐름에 관한 연구가 주로 수행되었으며, 해양사고의 발생 패턴에 대한 분석은 전통적인 통계 분석에 따라 제시되었다. 본 연구에서는 해양사고 통계 자료 중 선박교통관련 사고의 월별, 시간대별 발생 현황 데이터를 활용하여 해양사고 발생 예측 모델을 제시하고자 한다. 국내 해양사고 발생 현황 중 월별, 시간대별 데이터 집계가 가능한 1998년부터 2021년까지의 통계자료 중 선박교통 관련 데이터를 분류하여 정형 시계열 데이터로 변환하였으며, 대표적인 인공지능 모델인 순환 신경망 기반 장단기 기억 신경망을 통하여 예측 모델을 구축하였다. 검증데이터를 통하여 모델의 성능을 검증한 결과 RMSE는 초기 신경망 모델에서 월별 52.5471, 시간대별 126.5893으로 나타났으며, 관측값으로 신경망 모델을 업데이트한 결과 RMSE는 월별 31.3680, 시간대별 36.3967로 개선되었다. 본 연구에서 제안한 신경망 모델을 기반으로 다양한 해양사고의 특징 데이터를 학습하여 해양사고 발생 패턴을 예측할 수 있을 것이다. 향후 해양사고 발생 위험의 정량적 제시와 지역기반의 위험지도 개발 등에 관한 추가 연구가 필요하다.