• Title/Summary/Keyword: risk of collision

Search Result 366, Processing Time 0.022 seconds

A Study on the Algorithm for Automatic Generation of Optimal Waypoint with Terrain Avoidance (지형 회피를 위한 최적 경로점 자동 생성 알고리듬 연구)

  • Park, Jung-Jin;Park, Sang-Hyuk;Ryoo, Chang-Kyung;Shin, Sung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1104-1111
    • /
    • 2009
  • In the low altitude, mission of the aircraft is restricted by a variety of threats such as anti-air missiles and terrain obstacles. Especially, aircraft have always a risk of ground collision near terrain. In this study, to effectively solve this problem, we developed the flight path generation algorithm that is considered the terrain avoidance. In this flight path generation algorithm, waypoints that should be passed by the UAV are selected first. The waypoints are located in the middle of the terrain obstacles. Then, physically meaningful waypoints sets are classified by Dijkstra algorithm. The optimal waypoint guidance law based on the optimal control theory is applied to produce trajectory candidates. And finally the minimum control energy trajectory is determined.

A Review on the Impacts of Tidal Current Power Generation on the Marine animals (조류발전이 해양동물에 미치는 영향 검토 (리뷰))

  • Jeong Yeon Park;Young Cheol Park
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.182-195
    • /
    • 2024
  • Tidal current power generation is a power generation method that produces energy using tidal currents generated by tidal phenomena. Tidal current power generation is a sustainable and regular energy production because tidal phenomenon occurs as long as the earth exists. Many countries are focusing on the development of tidal energy, but there are still concerns about the impact of tidal energy on the marine animals. In the present study, we reviewed on the various impacts of tidal power generation on marine animals and the future assignments.

Co-Pilot Agent for Vehicle/Driver Cooperative and Autonomous Driving

  • Noh, Samyeul;Park, Byungjae;An, Kyounghwan;Koo, Yongbon;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1032-1043
    • /
    • 2015
  • ETRI's Co-Pilot project is aimed at the development of an automated vehicle that cooperates with a driver and interacts with other vehicles on the road while obeying traffic rules without collisions. This paper presents a core block within the Co-Pilot system; the block is named "Co-Pilot agent" and consists of several main modules, such as road map generation, decision-making, and trajectory generation. The road map generation builds road map data to provide enhanced and detailed map data. The decision-making, designed to serve situation assessment and behavior planning, evaluates a collision risk of traffic situations and determines maneuvers to follow a global path as well as to avoid collisions. The trajectory generation generates a trajectory to achieve the given maneuver by the decision-making module. The system is implemented in an open-source robot operating system to provide a reusable, hardware-independent software platform; it is then tested on a closed road with other vehicles in several scenarios similar to real road environments to verify that it works properly for cooperative driving with a driver and automated driving.

A Study on the Marine Traffic Assessment based on Traffic Distribution in the Strait of Malacca (말라카해협의 교통 분포를 기초로 한 해상교통 평가 연구)

  • Thanh, Nguyen Xuan;Park, Young-Soo;Park, Jin-Soo;Kim, Tae-Goun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • The Strait of Malacca is one of the most important fairways in the world and its traffic safety has direct effect on economic development of East Asian countries including China, Japan and Korea. Because of this reason, a safety analysis of the marine traffic in the strait has a great significance. In this paper, we analysed the statistic distribution of marine traffic in the Strait of Malacca based on the vessels' AIS data for 1 month by using the TOAIS and EasyFit programs. As the results of the analysis, it was found that the traffic distribution of this strait was different with normal distribution, which had been still widely used in marine traffic engineering field. Furthermore, with the traffic distribution analysis results, the traffic safety of the strait was also assessed by using the IWRAP model. The results showed that the highest level of risk were overtaking and crossing situations. Finally, we found that the highest risk of collision area in the Strait of Malacca was crossing area between the Strait of Malacca and the Port Klang fairway.

Analysis and Prediction Methods of Marine Accident Patterns related to Vessel Traffic using Long Short-Term Memory Networks (장단기 기억 신경망을 활용한 선박교통 해양사고 패턴 분석 및 예측)

  • Jang, Da-Un;Kim, Joo-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.780-790
    • /
    • 2022
  • Quantitative risk levels must be presented by analyzing the causes and consequences of accidents and predicting the occurrence patterns of the accidents. For the analysis of marine accidents related to vessel traffic, research on the traffic such as collision risk analysis and navigational path finding has been mainly conducted. The analysis of the occurrence pattern of marine accidents has been presented according to the traditional statistical analysis. This study intends to present a marine accident prediction model using the statistics on marine accidents related to vessel traffic. Statistical data from 1998 to 2021, which can be accumulated by month and hourly data among the Korean domestic marine accidents, were converted into structured time series data. The predictive model was built using a long short-term memory network, which is a representative artificial intelligence model. As a result of verifying the performance of the proposed model through the validation data, the RMSEs were noted to be 52.5471 and 126.5893 in the initial neural network model, and as a result of the updated model with observed datasets, the RMSEs were improved to 31.3680 and 36.3967, respectively. Based on the proposed model, the occurrence pattern of marine accidents could be predicted by learning the features of various marine accidents. In further research, a quantitative presentation of the risk of marine accidents and the development of region-based hazard maps are required.

A Study on the Safety Improvement of Vessel Traffic in the Busan New Port Entrance (부산신항 진출입 항로 내 선박 통항 안전성 향상에 관한 연구)

  • Choi, Bong-kwon;Park, Young-soo;Kim, Nieun;Kim, Sora;Park, Hyungoo;Shin, Dongsu
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.321-330
    • /
    • 2022
  • Busan New Port manages the largest volume of traffic among Korean ports, and accounts for 68.5% of the total volume of the Busan port. Due to this increase in volume, ultra large container ships call at Busan New Port. When the additional south container terminal as well as ongoing construction project of the west container terminal are completed, various encounters may occur at the Busan New Port entrance, which may cause collision risk.s Thus, the purpose of this study was to provide a plan to improve the safety of vessel traffic, in the in/out bound fairway of Busan New Port. For this purpose, the status of arrivals and departures of vessels in Busan New Port, was examined through maritime traffic flow analysis. Additionally, risk factors and safety measures were identified, by AHP analysis with ship operators of the study area. Also, based on the derived safety measures, scenarios were set using the Environmental Stress model (ES model), and the traffic risk level of each safety measure was identified through simulation. As a result, it is expected that setting the no entry area for one-way traffic would have a significant effect on mitigating risks at the Busan New Port entrance. This study can serve as a basis for preparing safety measures, to improve the navigation of vessels using Busan New Port. If safety measures are prepared in the future, it is necessary to verify the safety by using the traffic volume and flow changes according to the newly-opened berths.

A Basic Study on Establishment of Sea Trial Prohibition Waterway Based on Marine Traffic Survey (해상교통량 조사 기반 시운전금지해역 설정 기초 연구)

  • Park, Young-Soo;Kim, Jin-Kwon;Kim, Jong-Sung;Kim, Jong-Soo;Lee, Yun-Sok;Park, Sang-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.318-325
    • /
    • 2015
  • Korea has very strong shipbuilding industry in the world, so many new ships are constructed in Korean shipyards. These built vessels are carrying out sea trial at sea before delivering to shipowner, and sea trial ships cause navigation risk to other passing vessels to accomplish sea trial tests as quick turning, zigzag maneuvering and crash astern etc. in traffic congestion conditions. It occurred more than 1 collision accident related sea trial for recent 5 years. It has been increased about 30% of risk because of navigation of sea trial vessel by marine traffic flow simulation. This paper analyzed marine traffic density surveyed by AIS data for 7 days, and investigated position of marine accidents for 5 years in Korean coastal waterway, it established the sea trial prohibition areas as 10/100 level of total marine traffic volume, which is considered no danger for ship operator. This analyzed maritime safety law for setting of the prohibition waters to propose the basic legal system. It makes contribution to marine pollution prevention by setting of the sea trial prohibition water to improve the ship's navigation safety.

Setting Up of VTS Areas Around Jeju Using AIS Data (AIS 데이터를 활용한 제주지역 VTS 관제구역 설정)

  • Yoo, Sang-Lok;Kim, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.209-215
    • /
    • 2022
  • On the Jeju coast, international cruise ships, passenger ships, and other ships pass frequently, as well as many fishing boats. Thus, there is a high risk of marine accidents and frequent ship collisions. Accordingly, it is urgent to establish a coastal VTS for systematic safety management of ships passing through the coastal waters of Jeju. The purpose of this study was to set the area of the VTS to be newly established. In this study, to calculate the workload of the VTS operators, a formula was proposed that reflects the monitoring workload considering the monitoring frequency and required time for target as well as non-target ships and the workload for ship collision situations. The proposed formula was applied to the newly established VTS area in Jeju. Three control sectors were set up in each VTS center. The average number of workstations per hour was approximately 1, so the division between sectors was appropriate. Thus, it was deduced that there would be no workload for the VTS operators. It is expected that the method proposed in this study can be used as primary data for calculating the appropriate number of workstations for the current VTS, and setting the VTS area for a new coastal VTS in the future.

Development of a Systemized Flying Net for Safety Improvement in Architectural Building Construction (건설 공사의 안전성 향상을 위한 충돌방지형 시스템 플라잉넷의 개발)

  • Lee, Jeong-Ho;Park, Seon-Joo;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.5
    • /
    • pp.71-80
    • /
    • 2011
  • Flying net should be installed on every 3 or 4 construction floor from 8m above ground according to the rule. In the apartment housing construction, flying net installation work has been recognized the most dangerous work among the whole works because a small mistake of labors might make their death accident. Sub-contractors specialized in flying net have been developing various flying net types. However, most works of installing flying net as working with the developed system are performed outside the apartment housing, so that the risk of fall in works of installing supports and unfolding net is still high. Furthermore, as using the previously developed flying net labors might bump into the frame or the wire rope for supporting so that it makes secondary accidents. The objective of this research is to produce the proto-type of anti-collision flying net system based on the result of problem analysis on the installation and detachment process and suggest the improved anti-collision flying net system, which is able to improve safety and field applicability by conducting field experiment and analyzing performance.

A Comparison of Single and Multi-matrix Models for Bird Strike Risk Assessment (단일 및 다중 매트릭스 모델의 비교를 통한 항공기-조류 충돌 위험성 평가 모델 분석)

  • Hong, Mi-Jin;Kim, Myun-Sik;Moon, Young-Min;Choi, Jin-Hwan;Lee, Who-Seung;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.6
    • /
    • pp.624-635
    • /
    • 2019
  • Bird strike accidents, a collision between aircraft and birds, have been increasing annually due to an increasing number of aircraft operating each year to meet heavier demand for air traffic. As such, many airports have conducted studies to assess and manage bird strike risks effectively by identifying and ranking bird species that can damage aircraft based on the bird strike records. This study was intended to investigate the bird species that were likely to threaten aircraft and compare and discuss the risk of each species estimated by the single-matrix and multi-matrix risk assessment models based on the Integrated Flight Information Service (IFIS) data collected in Gimpo, Gimhae and Jeju Airports in South Korea from 2005 to 2013. We found that there was a difference in the assessment results between the two models. The single-matrix model estimated 2 species and 6 taxa in Gimpo and Gimhae Airports and 2 species and 5 taxa in Jeju Airport to have the risk score above "high," whereas the multi-matrix model estimated 3 species and 5 taxa in Gimpo Airport, 4 species and 5 taxa in Gimhae Airport, and 2 species and 3 taxa in Jeju Airport to have the risk score above "very high." Although both models estimated the similar high-risk species in Gimpo and Gimhae Airports, there was a significant difference in Jeju Airport. Gimpo and Gimhae Airports are near the estuary of a river, which is an excellent habitat for large and heavy waterbirds. On the other hand, Jeju Airport is near the coast and the city center, and small and light bird species are mostly observed. Since collisions with such species have little effect on aircraft fuselage, the impact of common variables between the two models was small, and the additional variables caused a significant difference between the estimation by the two models.