• Title/Summary/Keyword: risk assessment model

Search Result 1,077, Processing Time 0.034 seconds

Study on the Exposure Assessment Methodology for Outdoor Air Inhalation Pathways in Site-specific Risk Assessment and Its Application in a TPH-contaminated Site (유류오염부지 시범적용을 통한 실외공기 오염물질흡입 노출경로에 대한 부지특이적 노출량 산정 방안에 대한 고찰)

  • Kim, Sang Hyun;Chung, Hyeonyong;Jeong, Buyun;Noh, Hoe-Jung;Kim, Hyun-Koo;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.65-73
    • /
    • 2020
  • Exposure assessment methodology for outdoor air inhalation pathways (i.e., inhalation of volatile compounds and fugitive dust in outdoor air) was investigated. Default values of several parameters currently used in Korea (e.g., Q/C; inverse value of concentration per unit flux, and frs; soil fraction in PM10) may not be suitable and lack site-specificity, as they have been adopted from the risk assessment guidance of the United States or the Netherlands. Such limitation can be addressed to a certain degree by incorporating the volatilization factor (VF) and the particulate emission factor (PEF) with Box model. This approach was applied to an exposure assessment of a site contaminated with petroleum hydrocarbons in Korea. The result indicated that the suggested methodology led to more accurate site-specific exposure assessment for outdoor inhalation pathways. Further work to establish methodology to determine site-specific Q/C values in Korea needs to be done to secure the reliability of the exposure assessment for outdoor air inhalation pathways.

Health Risk Assessment and Evaluation of Asbestos Release from Asbestos-cement Slate Roofing Buildings in Busan (부산시내 석면슬레이트지붕 건축물로부터의 석면 노출 및 건강위해성 평가)

  • Jeong, Jae-Won;Cho, Sunja;Park, Geun-Tae;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1579-1587
    • /
    • 2013
  • This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate roofing (ASR) building. Total number of ASR buildings was into 21,267 in Busan, and 82.03 percent of the buildings was residential houses, and 43.61 percent of the buildings was constructed in 1970s. For this study, ten buildings were selected randomly among the ASR buildings. The range of airborne asbestos concentration in the selected ten ASR buildings was from 0.0016 to 0.0067 f/mL, and the concentration around no-admitted ASR buildings was higher than that around admitted buildings. The ELCR based on US EPA IRIS (integrated risk information system) model is within 3.5E-05 ~ 1.5E-04 levels, and the ELCR of no-admitted ASR buildings was higher than 1.0E-04 (one person per million) level that is considered a more aggressive approach to mitigate risk. These results indicate that the cancer risk from ASR buildings is higher than other buildings, and systematic public management is required for control of no-admitted ASR buildings within near future.

Load Transfer Switching for Reducing the Voltage Sag's Effect in Radial Power Distribution System (순간전압강하 저감을 위한 방사상 배전계통에서의 부하 절환 스위칭)

  • Yun, Sang-Yun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.208-210
    • /
    • 2000
  • In this paper, we present a method for mitigating the effect of voltage sag in radial power distribution systems using load transfer switching (LTS). The term of LTS is defined that the weakness load points for voltage sag transfer to the alternative source during the fault clearing practices. The sequences of proposed LTS method is divided into the search of weakness points for voltage sag using the risk assessment model and transfer behavior of weakness points. Through the case studies, we verify the effectiveness of proposed LTS method and present the searching method of effective application points of LTS method using the risk assessment model.

  • PDF

Analysis of the IMO's Role for Safe Maritime Transport System

  • Kim, Inchul;An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.266-273
    • /
    • 2015
  • Keeping in mind that there are only limited social, economic and administrative resources for reducing marine casualties, the result of statistical survey showed the loopholes of safe maritime transport system, and rendered that most casualties occurred in coastal waters by human errors. When the IMO Marine Casualty Investigation Code was utilized to reveal any structural vulnerability of the international measures, IMO was required to expand its roles to enhance the interface between Liveware and Environment of SHEL model. So, several risk assessment models were studied and found that Maritime Safety Audit System of the Republic of Korea could be a good example of enhancing safe interface between navigators (Liveware) and the navigational circumstances (Environment). It could be dealt with at IMO level as a tool for applying at human error enforcing waters. International cooperative research for upgrading risk assessment modes should also be future terms of reference.

An analytical model for assessing soft rock tunnel collapse risk and its engineering application

  • Xue, Yiguo;Li, Xin;Li, Guangkun;Qiu, Daohong;Gong, Huimin;Kong, Fanmeng
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.441-454
    • /
    • 2020
  • The tunnel collapse, large deformation of surrounding rock, water and mud inrush are the major geological disasters in soft rock tunnel construction. Among them, tunnel collapse has the most serious impact on tunnel construction. Current research backed theories have certain limitations in identifying the collapse risk of soft rock tunnels. Examining the Zhengwan high-speed railway tunnel, eight soft rock tunnel collapse influencing factors were selected, and the combination of indicator weights based on the analytic hierarchy process and entropy weighting methods was obtained. The results show that the groundwater condition and the integrity of the rock mass are the main influencing factors leading to a soft rock tunnel collapse. A comprehensive fuzzy evaluation model for the collapse risk of soft rock tunnels is being proposed, and the real-time collapse risk assessment of the Zhengwan tunnel is being carried out. The results obtained via the fuzzy evaluation model agree well with the actual situation. A tunnel section evaluated to have an extremely high collapse risk and experienced a local collapse during excavation, verifying the feasibility of the collapse risk evaluation model. The collapse risk evaluation model proposed in this paper has been demonstrated to be a promising and innovative method for the evaluation of the collapse risk of soft rock tunnels, leading to safer construction.

A Stochastic Model to Quantify the Risk of Introduction of Abalone Herpes-like Virus Through Import of Abalones (활 전복 수입에 의한 전복허피스바이러스감염증 (abalone herpes-like virus) 유입 위험평가)

  • Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.31 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • Abalone herpes-like virus (AbHV) is a fatal disease of abalones that impose severe economic impacts on the industry of infected regions due to high mortality. The aim of this study was to quantify the risk of introducing AbHV into Korea through the importation of live abalones for human consumption by import risk analysis (IRA). Monte Carlo simulation models were developed to provide estimates of the probability that a ton of imported abalone contains at least one AbHV-infected individual, using historical trade data and relevant literatures. A sensitivity analysis with 5,000 iterations was also conducted to determine the extent to which input parameters affect the outcome of the model. Although many uncertainties were present in the data, the results indicated that, if 5,000 tons of abalone were imported from a hypothetical exporting country with low prevalence of AbHV (model 1), there would be at least one AbHV-infected abalones in 4,816 of those tons (96.3%), while there would be at least one AbHV-infected abalones in 100% of those tons imported from country with high prevalence (model 2). Sensitivity analysis indicated that for model 1, prevalence was the strongest influence factor on the predicted number of infections. For model 2, background mortality and washing to reduce the risk of surface contamination during processing were the major contributing factors. Risk management strategies need to be enforced to reduce the risk of AbHV introduction in that at least one infected abalone would remain in a consignment from country even with a low prevalence of AbHV infection. The methodology and the results presented here will contribute to improve the development of AbHV management program, and with more accurate data this IRA model will aid science-based decision-making on mitigation strategies to reduce the risk of AbHV introduction in Korea.

Evaluation of the Validity of Risk-Adjustment Model of Acute Stroke Mortality for Comparing Hospital Performance (병원 성과 비교를 위한 급성기 뇌졸중 사망률 위험보정모형의 타당도 평가)

  • Choi, Eun Young;Kim, Seon-Ha;Ock, Minsu;Lee, Hyeon-Jeong;Son, Woo-Seung;Jo, Min-Woo;Lee, Sang-il
    • Health Policy and Management
    • /
    • v.26 no.4
    • /
    • pp.359-372
    • /
    • 2016
  • Background: The purpose of this study was to develop risk-adjustment models for acute stroke mortality that were based on data from Health Insurance Review and Assessment Service (HIRA) dataset and to evaluate the validity of these models for comparing hospital performance. Methods: We identified prognostic factors of acute stroke mortality through literature review. On the basis of the avaliable data, the following factors was included in risk adjustment models: age, sex, stroke subtype, stroke severity, and comorbid conditions. Survey data in 2014 was used for development and 2012 dataset was analysed for validation. Prediction models of acute stroke mortality by stroke type were developed using logistic regression. Model performance was evaluated using C-statistics, $R^2$ values, and Hosmer-Lemeshow goodness-of-fit statistics. Results: We excluded some of the clinical factors such as mental status, vital sign, and lab finding from risk adjustment model because there is no avaliable data. The ischemic stroke model with age, sex, and stroke severity (categorical) showed good performance (C-statistic=0.881, Hosmer-Lemeshow test p=0.371). The hemorrhagic stroke model with age, sex, stroke subtype, and stroke severity (categorical) also showed good performance (C-statistic=0.867, Hosmer-Lemeshow test p=0.850). Conclusion: Among risk adjustment models we recommend the model including age, sex, stroke severity, and stroke subtype for HIRA assessment. However, this model may be inappropriate for comparing hospital performance due to several methodological weaknesses such as lack of clinical information, variations across hospitals in the coding of comorbidities, inability to discriminate between comorbidity and complication, missing of stroke severity, and small case number of hospitals. Therefore, further studies are needed to enhance the validity of the risk adjustment model of acute stroke mortality.

토양증기추출공정 중 오염물의 거동평가기법에 관한 연구

  • 조현정;권태순;양중석;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.354-355
    • /
    • 2003
  • In this study, a risk-based cleanup approach using the leaching potential was suggested for the soil vapor extraction (SVE) process. A multi-component model was adopted with local equilibrium assumption (LEA), and Raoult's law was applied to estimate the leaching potential for BTEX. Finally, a risk analysis was conducted based on the leaching pontential calculated. To complete the feasibility of this approach, more investigations and discussions will be required in future.

  • PDF

Risk analysis of offshore terminals in the Caspian Sea

  • Mokhtari, Kambiz;Amanee, Jamshid
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-285
    • /
    • 2019
  • Nowadays in offshore industry there are emerging hazards with vague property such as act of terrorism, act of war, unforeseen natural disasters such as tsunami, etc. Therefore industry professionals such as offshore energy insurers, safety engineers and risk managers in order to determine the failure rates and frequencies for the potential hazards where there is no data available, they need to use an appropriate method to overcome this difficulty. Furthermore in conventional risk based analysis models such as when using a fault tree analysis, hazards with vague properties are normally waived and ignored. In other word in previous situations only a traditional probability based fault tree analysis could be implemented. To overcome this shortcoming fuzzy set theory is applied to fault tree analysis to combine the known and unknown data in which the pre-combined result will be determined under a fuzzy environment. This has been fulfilled by integration of a generic bow-tie based risk analysis model into the risk assessment phase of the Risk Management (RM) cycles as a backbone of the phase. For this reason Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are used to analyse one of the significant risk factors associated in offshore terminals. This process will eventually help the insurers and risk managers in marine and offshore industries to investigate the potential hazards more in detail if there is vagueness. For this purpose a case study of offshore terminal while coinciding with the nature of the Caspian Sea was decided to be examined.

Development of Risk Assesment Index for Construction Safety Using Statistical Data (통계자료를 활용한 건설안전 위험도 평가지수 개발)

  • Park, Hwan-Pyo;Han, Jae-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.361-371
    • /
    • 2019
  • In 2017, the ratio of the number of victims and deaths in the construction industry was the highest with 25.2% and 29.6%, respectively. Especially, as safety accidents at construction sites continue to increase, the economic loss is greatly increased too. Therefore, in order to prevent safety accidents in the construction work, the safety risk assessment index by type of construction was developed, and the main results of this study are as follows. First, 17 factors related to safety accidents at construction sites were derived through survey and interview survey, and this study suggested 9 items(process, type of construction, progress rate, contract amount, number of floors, safety education, working days and weather) throughout the expert advisory meeting. Second, the risk assessment index for safety accidents was developed based on the ratio and intensity of safety accidents. Third, to verify the risk assessment model, the construction safety risk assessment index by type of construction was derived by surveying and analyzing the statistics of the construction accident. In addition, the risk strength was calculated by dividing human damage caused by construction safety accidents into those killed and injured. The risk assessment index based on the frequency and intensity of safety accidents by type of construction is expected to be utilized as basic data when assessing the risk of similar projects in the future.