• Title/Summary/Keyword: ripening temperature

Search Result 295, Processing Time 0.029 seconds

Impact of low temperature during ripening stage, amylose content and activities of starch biosynthesis in rice endosperm

  • Baek, Jung-Sun;Hwang, Woon-Ha;Jeong, Han-Yong;An, Sung-Hyun;Jeong, Jae-Heok;Lee, Hyeon-Seok;Yoon, Jong-Tak;Choi, Kyung-Jin;Lee, Gun-Hwi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.229-229
    • /
    • 2017
  • This research study was conducted to analyze the characteristics of different rice cultivars in abnormal temperature conditions (low temperature) for ripening period abnormalities, and to investigate the physiological causes behind the abnormalities. Four Korean high quality japonica-type rice cultivars, Jinbu (JB), Junamjosaeng (JJ), Geumyoung (GY), Hwawang (HW) were used in the experiment. The following day after flowering, they were then moved into two phytotrons under natural daylight with 65% RH but controlled at different temperatures - one at $19/29^{\circ}C$ (night/day) and the other at $13/23^{\circ}C$ as the low - temperature study on ripening. For the cultivars at $13/23^{\circ}C$ (low temperature study), JB and JJ had a ripening rate of 93% which is similar to the ripening rates of cultivars at $19/29^{\circ}C$ at 45 days after heading (DAH). In contrast, GY and HW recorded lower ripening rates of 86% and 57% respectively. However, when the cultivars at $13/23^{\circ}C$ were harvested at 61 DAH (when the accumulated temperature reached $1100^{\circ}C$), the difference in ripening rates compared to the 4 cultivars of $19/29^{\circ}C$ harvested at 45 DAH was not obvious (JB 94%, JJ 97%, GY 97%, HW 88%). Starch content showed little difference among the 4 cultivars at different temperature conditions while amylose content was higher for cultivars at $13/23^{\circ}C$ compared to those at $19/29^{\circ}C$. In addition, the enzyme activities of starch biosynthesis were about 5~10 days slower in cultivars at $13/23^{\circ}C$ compared to cultivars at $19/29^{\circ}C$. The grain-filling rate showed highly significant correlations with the enzyme activities of Sucrose synthase ($R^2=0.70^{***}$), ADP glucose pyrophosphorylase ($R^2=0.63^{***}$), UDP glucose pyrophosphorylase ($R^2=0.36^{***}$), Starch synthase ($R^2=0.51^{***}$), and Starch branching enzyme ($R^2=0.59^{***}$). Among the enzymes, Sucrose synthase activity had the highest correlation coefficient with grain-filling rate. In conclusion, the activity of enzymes such as Sucrose synthase, UDP glucose pyrophosphorylase, ADP glucose pyrophosphorylase, Starch synthase, Starch branching enzyme in starch biosynthesis is proven to be highly related to the grain filling process. Notably, the decrease in the activity of Sucrose synthase and Starch branching enzyme and the late increase in ADP glucose pyrophosphorylase activity at low temperature in the ripening stage are considered to be disadvantageous as they delay ripening and increased amylose content.

  • PDF

Climate Change Impacts on Optimum Ripening Periods of Rice Plant and Its Countermeasure in Rice Cultivation (기후변화에 따른 벼 적정 등숙기간의 변동과 대책)

  • 윤성호;이정택
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.55-70
    • /
    • 2001
  • It was unusual crop weather for 1998 and 1999 compared with normal in Korea. The consecutive days of the optimum ripening period for rice plant that had daily mean temperature 21~23$^{\circ}C$ for 40 days after flowering, increased with long anomalies in 1998~99. The air temperature during ripening period was much higher than the optimum temperature and lower sunshine hour than norm in the local adaptability tests of newly developed rice lines during those years. In response of rice cultivation to warming and cloudy weather during crop season, the yield shall be decreased. Most scientists agree that the rate of heating is accelerating and temperature change could become increasingly disruptive. Weather patterns should also become more erratic. Agrometeorologists could be analyzed yearly variations of temperature, sunshine hour and rainfall pattern focused on transient agroclimate change for last a decade. Rice agronomists could be established taking advantage of real time agricultural meteorology information system for fertilization, irrigation, pest control and harvest. Also they could be analyzed the characteristics of flowering response of the recommended and newly bred rice cultivars for suitable cropping plan such as cultural patterns and sowing or transplanting date. Rice breeders should be deeply considered introducing the characteristics of basic vegetative type of flowering response like Togil rices as prospective rice cultivars corresponding to global warming because of the rices needed higher temperature at ripening stage than japonica rices, photoperiod-sensitive and thermo-sensitive ecotypes.

  • PDF

Effects of Low Temperature during Ripening on Amylose Content and Enzyme Activities Associated with Starch Biosynthesis in Rice Endosperm

  • Baek, Jung-sun;Jeong, Han-Yong;An, Sung-Hyun;Jeong, Jae-Heok;Lee, Hyen-Seok;Yoon, Jong-Tak;Choi, Kyung-Jin;Hwang, Woon-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.86-97
    • /
    • 2018
  • The objective of this study was to determine the effects of low temperature on starch accumulation in rice grains. We used four major Japonica-type Korean rice cultivars as materials: Jinbu (JB), Junamjosaeng (JJ), Geumyoung (GY), and Hwawang (HW). Rice plants were moved into two phytotrons the day after heading. Temperatures in the two phytotrons were maintained at $19/29^{\circ}C$ (night/day) as the control, and $13/23^{\circ}C$ as the low temperature condition, both under natural daylight with a relative humidity of 65%. The ripening rates of JB and JJ showed no significant difference between the low temperature and control conditions at 45 days after heading (DAH). In contrast, the ripening rates of GY and HW were 86% and 57% lower than those of JB and JJ under the low temperature condition at 45 DAH, respectively. However, the ripening rates of these four varieties at 61 DAH (when accumulated temperature reached $1,100^{\circ}C$) under the low temperature condition were similar to those at 45 DAH under the control condition (JB, 94%; JJ, 97%; GY, 97%; HW, 88%). The total starch contents showed no significant difference between the control and low temperature conditions. However, the amylose contents in the cultivars were higher under the low temperature than under the control condition. The enzyme activities of starch biosynthesis were about 5-10 days slower in cultivars under the low temperature than under the control. The grain-filling rate showed significant correlations with the enzyme activities of SuSase ($r^2=0.70^{***}$), AGPase ($r^2=0.63^{***}$), UDPase ($r^2=0.36^{***}$), StSase ($r^2=0.51^{***}$), and SBE ($r^2=0.59^{***}$). In conclusion, although StSase activity was increased at $13/23^{\circ}C$ up to 20 DAH, there might not be enough time for SBE to synthesize amylopectin, thus affecting the amylose content of HW, which had the slowest grain filling rate. Notably, the decreased activity of SuSase and SBE and late increase in AGPase activity under the low temperature during the ripening stage are considered to be disadvantageous, as they delay ripening and increase the amylose content.

Effect of Ripening Conditions on Quality of Winter Squash 'Bochang' (후숙조건에 따른 단호박 '보짱'의 품질특성)

  • Park, Do-Su;Tilahun, Shimeles;Hyun, Jae-Young;Kwon, Hye-Soon;Jeong, Cheon-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.142-146
    • /
    • 2016
  • Ripening conditions of the winter squash 'Bochang' were evaluated. Soluble solids contents increased as the ripening duration was prolonged and with higher temperature. After harvest, the Hunter 'b' value of the skin was 2.42. At 25 and $30^{\circ}C$, the Hunter 'b' values were recorded at approximately 6.91 and 7.56, respectively. At $35^{\circ}C$, the Hunter 'b' value was increased to about 7.79 on day 9. Furthermore, at $35^{\circ}C$, the appearance quality was reduced with a yellowing phenomenon of the pericarp observed after 9 days. The starch contents also decreased with higher temperature, and sucrose contents increased in all ripening conditions with a longer period and higher temperature. Overall, these results indicate that ripening conditions of $25^{\circ}C$ for 18-21 days and at $30^{\circ}C$ for 12-15 days are suitable for the optimum ripening of winter squash.

Circulation State of Strawberry and Quality Changes during Ripening (딸기의 유통실태와 성숙중의 품질변화)

  • 박인경;장경숙
    • Food Science and Preservation
    • /
    • v.1 no.1
    • /
    • pp.45-53
    • /
    • 1994
  • Circulation state and changes in quality during ripening of strawberry were investigated. Tissue damage of the fruit happened when it was harvested and selected. Strawberry has been harvested without considering of fruit temperature in the farm. It takes 25 hours from Goreung which is main production area of strawberry to retailer, and seasonal variation in the price was severe. Shelf-life of strawberry from Feb to Mar was 5-6 days, and was 24-30 hours from May to June. Desirable ripening stage was 28-30th day after blooming and 40th day and after this was over ripening stage when the degree of ripening estimated by color "a" value and color saturation. Overall eating quality and vitamin C contents and sugar content were more higher in the fruit of the desirable ripening stage than that of unripening and over ripening stage. The dark redness degree was high in the over ripening stage.

  • PDF

Changes in Starch Synthesis and the Characteristics of Photosynthate Translocation at High Temperature during the Ripening Stage in Barley (보리 등숙기 고온에 따른 전분합성 및 동화산물 전류 특성 변화)

  • Lee, Hyeon-Seok;Hwang, Woon-Ha;Kim, Dae-Wook;Jeong, Jae-Hyeok;Ahn, Seung-Hyeon;Baek, Jeong-seon;Jeong, Han-Yong;Yun, Jong-Tak;Lee, Geon-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.124-133
    • /
    • 2017
  • This experiment was conducted to evaluate the effects of high temperature on the stem, leaf and grain of barley during the ripening period and to provide information for the development of high-temperature cultivation techniques and adaptive varieties. We used an artificial climate control facility, to provide a temperature $3^{\circ}C$ higher than the normal average temperature during the ripening stage. Although the maximum rate of starch synthesis was increased at high temperature by approximately 11%, the starch content was decreased, because the period of starch synthesis ended 4 days earlier. As in the case of starch synthesis, the expression of genes related to starch synthesis was increased at the early ripening stage in the high temperature treatment, however, the duration of expression tended to decrease rapidly. Furthermore, the partitioning rate of assimilation products in the panicle increased to a greater extent in the high temperature treatment than in the control. In contrast, for the stem and leaf, the partitioning rate of assimilation products decreased more rapidly in the high temperature treatment than in the control. On the basis of these results, it can be considered that the translocation rate of assimilation products increased to a greater extent in the high temperature treatment than in the control at the early ripening stage. These results indicate that the decrease in grain weight at high temperature during the ripening stage is attributable to an increase in the speed of starch synthesis at high temperature, but the increase in ripening speed does not compensate for the shortening of the ripening period. Finally to develop varieties and cultivation techniques suited to high temperature, we need to focus on physiological characteristics related to the duration of starch synthesis.

Development of Functionality in Cheese (기능성 향상 치즈 개발 연구)

  • Ahn, Sung-Il;Choi, Kyung-Hoon;Kwak, Hae-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Cheese is a nutritious food with various balanced nutrients, such as proteins, peptides, amino acids, fats, fatty acids, vitamins and minerals. Domestic cheese varieties and quality need to be improved to prevent imported cheese. To develop those cheeses, search for previous works and research for new products are needed. In cheese ripening of hard cheese, such as Cheddar or Parmesan cheese, is ripened for 2 to 24 months at 2 to 16$^{\circ}C$ to develop desired cheese flavor and body characteristics. Long time with low temperature to ripen the cheese requires high expenses. So accelerated cheese ripening is a good potential for saving in industry. Methods for acceleration of cheese ripening are temperature control, addition of bacteria or enzymes. To develop the functionality of cheese, addition of microencapsulated various probiotics and nutrients, such as iron, removal of cholesterol by crosslinked ${\beta}$-cyclodextrin, lowering blood cholesterol and serum glucose by nanopowdered functional materials et al. are necessary. Therefore, this review focused on the functionality of cheese, such as the acceleration of cheese ripening, microencapsulated probiotics and iron, and cholesterol removal.

  • PDF

Expression of Genes Affecting Skin Coloration and Sugar Accumulation in 'Hongro' Apple Fruits at Ripening Stages in High Temperatures (고온에 의한 변색단계별 '홍로' 사과의 착색 및 당 축적 관련 유전자 발현 분석)

  • Kim, Seon Ae;Ahn, Soon Young;Yun, Hae Keun
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • High temperature is one of the important environmental factors limiting cultivation of apple (Malus domestica Borkh). The expression of genes related with anthocyanin synthesis and sugar accumulation in response to high temperature was studied in the 'Hongro' apple fruits at different developmental stages in different temperature conditions through real-time PCR. Expression of ${\hat{a}}$-amylase (BMY) and polygalacturonase (PG) genes related with sugar synthesis was higher in late ripening stages than in initial ripening stages. Expression of four genes such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and malate dehydrogenase (MDH), which were related with fruit skin coloration, increased gradually in apple fruits of the middle and late ripening stages. Interestingly, the expressions of all genes were highly inhibited expressed at $30-35^{\circ}C$ compared to $25^{\circ}C$ in all ripening stages. In the further work, investigation of expression levels of various genes could be conducted in the level of transcriptomics in fruits at the middle ripening stages to get meaningful information of ripening metabolism in apple in high temperatures.

Biochemical Changes in Sugars and Cell Wall Degrading Enzymes during Ripening of Banana

  • Lee, Min-Kyung;Kim, Mi-Jeong;Park, Inshik
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.92-94
    • /
    • 2004
  • Changes in reducing sugar and cell wall degrading enzymes during ripening of banana for 10 days were investigated. The amount of reducing sugar in bananas increased during storage at room temperature during the first 7 days, and decreased thereafter. However, starch content in banana decreased during ripening, and invertase and cell wall degrading enzymes such as cellulase, polygalacturonase and xylanase were most active after bananas were stored for 7 days at room temperature. When the bananas were stored at 4$^{\circ}C$, the magnitude of changes were much less than during room temperature storage.

Effects of Temperature on Grain Filling Properties of Rice Flour Varieties during the Ripening Stage (등숙기 온도에 따른 쌀가루 가공용 벼의 등숙특성 변이 구명)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun;Choi, MyoungGoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The processing of rice is one of the measures to expand the scope of rice use in response to the decrease in rice consumption. Since the main ingredient of rice processing is rice flour, "rice flour varieties" have been bred with the aim to improve the productivity and quality of rice flour. In order to study the variation in the ripening characteristics of rice flour varieties with respect to temperature, the average temperature after heading date was set at 28℃ (33/23℃), 22℃ (27/17℃), and 18℃ (23/13℃) inside the phytotron. We used Saenuri as non-glutinous rice variety, Seolgaeng as soft-type rice flour variety, and Baromi2 as powdered rice flour variety. At high temperatures (28℃), the grain weight of Baromi2 decreased by 21%. Its starch content also decreased by more than 10%, which was significantly lower than that of Saenuri and Seolgaeng. At low temperatures (18℃), the grain weight and starch content slightly increased or were similar in all varieties. An analysis of changes in the grain weight due to effective accumulated temperature through the sigmoid function showed that the velocity of grain-filling slowed significantly when Baromi2 was exposed to low temperature during the ripening stage compared to the other varieties. Therefore, the transplanting time of Baromi2 should be delayed to avoid high temperatures during the ripening stage. However, because the ripening period is not properly secured under low temperature conditions, grain filling may not be sufficient.