Browse > Article
http://dx.doi.org/10.7740/kjcs.2021.66.1.001

Effects of Temperature on Grain Filling Properties of Rice Flour Varieties during the Ripening Stage  

Yang, SeoYeong (Crop Cultivation & Physiology Research Division, National Institute of Crop Science, Rural Development Administration)
Hwang, WoonHa (Crop Cultivation & Physiology Research Division, National Institute of Crop Science, Rural Development Administration)
Jeong, JaeHyeok (Crop Cultivation & Physiology Research Division, National Institute of Crop Science, Rural Development Administration)
Lee, HyeonSeok (Crop Cultivation & Physiology Research Division, National Institute of Crop Science, Rural Development Administration)
Lee, ChungGeun (Crop Cultivation & Physiology Research Division, National Institute of Crop Science, Rural Development Administration)
Choi, MyoungGoo (Crop Cultivation & Physiology Research Division, National Institute of Crop Science, Rural Development Administration)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.66, no.1, 2021 , pp. 1-7 More about this Journal
Abstract
The processing of rice is one of the measures to expand the scope of rice use in response to the decrease in rice consumption. Since the main ingredient of rice processing is rice flour, "rice flour varieties" have been bred with the aim to improve the productivity and quality of rice flour. In order to study the variation in the ripening characteristics of rice flour varieties with respect to temperature, the average temperature after heading date was set at 28℃ (33/23℃), 22℃ (27/17℃), and 18℃ (23/13℃) inside the phytotron. We used Saenuri as non-glutinous rice variety, Seolgaeng as soft-type rice flour variety, and Baromi2 as powdered rice flour variety. At high temperatures (28℃), the grain weight of Baromi2 decreased by 21%. Its starch content also decreased by more than 10%, which was significantly lower than that of Saenuri and Seolgaeng. At low temperatures (18℃), the grain weight and starch content slightly increased or were similar in all varieties. An analysis of changes in the grain weight due to effective accumulated temperature through the sigmoid function showed that the velocity of grain-filling slowed significantly when Baromi2 was exposed to low temperature during the ripening stage compared to the other varieties. Therefore, the transplanting time of Baromi2 should be delayed to avoid high temperatures during the ripening stage. However, because the ripening period is not properly secured under low temperature conditions, grain filling may not be sufficient.
Keywords
grain filling properties; rice flour variety; ripening stage; temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, K. J., C. K. Lee, J. T. Kim, J. H. Kim, K. Y. Ha, W. H. Yang, C. K. Lee, K. S. Kwak, H. K. Park, J. K. Nam, J. I. Kim, G. J. Han, Y. S. Cho, Y. H. Park, S. W. Han, J. R. Kim, S. Y. Lee, H. G. Choi, S. H. Cho, H. G. Park, D. J. Ahn, W. K. Joung, S. I. Han, S. Y. Kim, K. C. Jang, S. H. Oh, W. D. Seo, J. E. Ra, J. Y. Kim, and H. W. Kang. 2011. Effect of Temperature During Grain Filling Stage on Grain Quality and Taste of Cooked Rice in Mid-late Maturing Rice Varieties. Korean J. Crop Sci. 56(4) : 404-412.   DOI
2 Cooper, N. T. W., T. J. Siebenmorgen, and P. A. Counce. 2008. Effects of Nighttime Temperature During Kernel Development on Rice Physicochemical Properties. Cereal Chemistry 85(3) : 276-282.   DOI
3 Counce, P. A., K. B. Watkins, K. R. Brye, and T. J. Siebenmorgen. 2009. A Model to Predict Safe Stages of Development for Rice Field Draining and Field Tests of the Model Predictions in the Arkansas Grand Prairie. 101(1) : 113-119.   DOI
4 Ebata, M. 1990. Effective Heat Unit Summation and Base Temperature on the Development of Rice Plant : II. On heading, flowering, kernel development and maturing of rice. Japanese Journal of Crop Science 59(2) : 233-238.   DOI
5 Gao, L. Z., Z. Q. Jin, and L. Li. 1987. Photo-thermal models of rice growth duration for various varietal types in China. Agricultural and Forest Meteorology 39(2) : 205-213.   DOI
6 Juliano, B. 1971. A Simplified Assay for Milled-Rice Amylose. Cereal Science Today 16 : 334-360.
7 Kim, K. C. 1983. Studies on the Effect of Temperature During the Reduction Division and the Grain Filling Stage in Rice Plants. Korean J. Crop Sci. 28(1) : 58-75.
8 Lee, C. K., Y. U. Kwon, J. E. Lee, J. H. Seo, and B. W. Lee. 2010. The Effect of Temperature and Radiation on Grain Weight and Grain Nitrogen Content in Rice. Korean J. Crop Sci. 55(4) : 275-283.
9 Li, N., R. Xu, P. Duan, and Y. Li. 2018. Control of grain size in rice. Plant Reprod 31(3) : 237-251.   DOI
10 Matthews, R., M. Kropff, D. Bachelet, and H. H. Laar. 1995. Modeling the Impact of Climate Change on Rice Production in Asia: 3. The Rice Model ORYZA1 and Its Testing. International Rice Research Institute. pp. 27-50.
11 Park, H. G., S. Y. Kang, W. Y. Choi, S. S. Kim, K. S. Lee, and W. H. Yang. 1999. Effects on Ripening and Grain Yield of Rice by High Temperature Stress at Reproductive Growth and Ripening Stage. 1999 KSCS Spring Conference. pp. 114-115.
12 Sheehy, J. E., P. L. Mitchell, and A. B. Ferrer. 2004. Bi-Phasic Growth Patterns in Rice. Annals of Botany 94(6) : 811-817.   DOI
13 Statistics Korea. 2020. Grain consumption survey. Retrieved from https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ED0001&conn_path=I2.
14 Tashiro, T. and I. F. Wardlaw. 1991a. The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Australian Journal of Agricultural Research 42(3) : 485-496.   DOI
15 Tashiro, T. and I. F. Wardlaw. 1991b. The Effect of High Temperature on the Accumulation of Dry Matter, Carbon and Nitrogen in the Kernel of Rice. Functional Plant Biology 18(3) : 259-265.   DOI
16 Yoshida, S. and T. Hara. 1977. Effects of air temperature and light on grain filling of an indica and a japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Science and Plant Nutrition 23(1) : 93-107.   DOI