• Title/Summary/Keyword: ripening stage

Search Result 321, Processing Time 0.038 seconds

Analysis of Variables Influencing the Pressure Build-up and Volume Expansion of Kimchi Package (김치포장의 압력 및 부피 변화에 영향을 미치는 인자의 분석)

  • 이동선;최홍식;박완수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.429-437
    • /
    • 1999
  • A mathematical model was established for estimating changes in pressure and volume of permeable kimchi packages. The model comprises the CO2 gas production from kimchi and permeation of O2, CO2 and N2 through the permeable film or sheet. Using the developed model, the effects of various packaging variables on the pressure and volume changes were analyzed for rigid and flexible packag es of kimchi(3% salt content) at 15oC, and then effect of storage temperature was also looked into. In case of rigid pack of 400g, using the plastic sheet of high CO2 permeability and initial vacuumizing can help to relieve the problem of pressure build up. The lower fill weight can further reduce the pressure, but will result in higher packaging cost. For the flexible package of 3 kg, highly permeable films such as low density polyethylene(LDPE) and polypropylene can reduce the volume expansion. Higher ratio of CO2 permeability to O2 and N2 permeabilities are effective in reducing the volume expansion. Increased surface area cannot contribute to reduction of volume expansion for highly permeable flexible packages of kimchi. For the impermeable packages, pressure and volume at over ripening stage (acidity 1.0%) increase with decreased temperature, while those at optimum ripening stage(acidity 0.6%) change little with temperature. Pressure of permeable rigid LDPE package increases with tem perature at any ripening stage, and temperature affects the volume of flexible LDPE package very slightly. Experimental verification of the present results and package design with economical consid eration are needed as a next step for practical application.

  • PDF

Change of photosynthetic efficiency and yield by low light intensity on ripening stage in japonica rice (등숙기의 차광 처리에 의한 광합성능 및 쌀 수량 변화)

  • Lee, Min Hee;Kang, Shin-Gu;Sang, Wan-Gyu;Ku, Bon-Il;Kim, Young-Doo;Park, Hong-Kyu;Lee, Jeom-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • Light intensity is one of the most important requirements for plant growth, affecting growth, development, survival, and crop productivity. Sunlight is the main energy source on Earth which is energy used by photosynthesis to convert light energy to chemical energy. In this study, the light use efficiency and photosynthetic characteristics of high-quality rice cultivars were evaluated after shading on ripening stage. For the study, we treated of three levels of shade (0, 50 and 70%) on rice at ripening stage and two levels of nitrogen (9 and 18 kg/10a) used three high yielding rice cultivars, such as Boramchan, Hopum, and Honong. The shade was given for the respective plots from heading up to harvesting. We were performed to determine growth survey, SPAD and chlorophyll fluorescence every 10 days interval after shading on ripening stage. At harvest stage, grain yield and yield components were determined. Results of analysis of the results representing the maximum photosynthetic efficiency of PSII, Fv/Fm, and SPAD were decreased by depending on the time at full sunlight. But shade treatments were not changed and a significant difference among cultivars did not appear. Compared with the full sunlight, shade treatments significantly delayed ripening rate and decreased rice quality of cultivated rice. Therefore, rice yield, can be reduced in proportion to the shading density is apparent, the rate of decrease was not observed difference between varieties, when protected from light 70%, and decreased to less than 50%. The adverse effects of low light intensity on the yield and yield components were not able to significantly minimize by the nitrogen level.

Effect of High Temperature on Leaf Physiological Changes as Chlorophyll composition and Photosynthesis Rate of Rice (벼 등숙기 고온이 잎의 엽록소구성과 광합성 및 생리적 변화에 미치는 영향)

  • Shon, Jiyoung;Kim, Junhwan;Lee, Chung-Kuen;Yang, Woonho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.266-272
    • /
    • 2015
  • High temperature impairs rice grain yield and quality. To understand the effect of high temperature on leaf physiological activity and grain filling, two cultivars of rice that Dongan and Ilpum were exposed to high temperature during ripening stage. Grain filling rate, perfect grain ratio and grain weight of high temperature ($27^{\circ}C{\pm}4^{\circ}C$) treated both rice cultivars were decreased than those of control temperature ($22^{\circ}C{\pm}4^{\circ}C$) treated. The reduction rates of grain filling ratio, perfect grain ratio and grain weight of high temperature treated to control treated rice were higher in Ilpum than Dongan. Chlorophyll contents of rice leaves under high temperature at early ripening stage were higher than those of control temperature, but those were slowly decreased with no difference between temperature treatment since at mid ripening stage. Although chlorophyll a/b ratio under high temperature was decreased from heading to 15 days after heading, that was gradually increased since 15 days after heading. Protein concentrations of rice leaves for ripening stage was a similar pattern with chlorophyll changes. The rate of photosynthesis at 14 days after heading under high temperature was higher than those of control temperature, but there was no difference at those of 7 and 34 days after heading between two temperature treatment. Free sugars under high temperature treated leaves were lower than control temperature. Consequently, these results exhibit that high temperature accelerate leaf physiological activity as chlorophyll synthesis and photosynthesis rate unlike the deterioration of grain filling.

Heading and Ripening Characters of Major Early Maturing Breeding Rice Lines According to Transplanting Date and Temperature Condition (이앙기 및 온도에 따른 주요 벼 조생종 교배모본의 출수 및 등숙 특성 변화)

  • Hwang, Woon-Ha;Lee, Chung-Kuen;Jung, Jae-Hyeok;Lee, Hyeon-Suk;Yang, Seo-Yeong;Im, Yeon-Hwa;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.185-192
    • /
    • 2019
  • Early-maturing rice type is cultivated to produce rice before the Korean Thanksgiving Day. We investigated the flowering and ripening characteristics of major breeding lines in early maturing rice type. In Jeonju, field growth days (FGD) from transplanting to heading changed about 3.3 days by 10 days of transplanting days and about 2.5 days by the change of mean temperature during growth period. As the temperature during ripening stage, 1000 brown rice weight was changed 0.2 g, the rice quality of brown and milled rice was changed 5% and 6.5%, respectively. Baegilmi and Kittake showed early heading habit suitable for harvesting before Korean Thanksgiving. Joun and Pecos showed good ripening characteristics under high temperature during the ripening stage. We expect that these characteristics might be useful for breeding new rice cultivars for harvesting before Korean Thanksgiving.

Vetch Effects for the Low-input No-till Direct-Seeding Rice-Vetch Cropping System

  • Cho, Young Son;Choe, Zhin Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.221-224
    • /
    • 1999
  • A field experiment was carried out to observe the weed control effects of vetch and to evaluate vetch characteristics on clay loam soil in no-till direct-sown rice-vetch cropping systems. The effects of weed control, forage productivity, and N content of vetch plants were investigated. With the progress of plant growth, density of Chinese milk vetch (Astragalus sinicus L.) gradually decreased, but densities of foxtail and other weeds decreased steeply due to the depression by the over-shaded vetch canopy in a no-till direct-sown rice-vetch cropping paddy field. The vetch density in tillage systems was lower than in notillage cropping systems. Lower vetch density occurred with an increase in foxtail density and other weeds. Weed control effect increased by the progress of vetch growth, which indicated that the vetch canopy over-shaded the weeds. Vetch straw was degraded rapidly submergence after with water at the time of wet sowing of rice. Early harvesting of vetch seed resulted in lower seed germination. To acquire enough seedlings without re-sowing, the harvesting of seed should be delayed at least 28 days after the flowering stage in order to ensure the vetch population is sustainable in a no-till direct-sown rice-vetch cropping system. In order to improve the survival of vetch plants, vetch seeds should germinate from the heading .stage to before the full-ripening stage of rice plants. To enhance the percent of over-wintering survival, vetch seeds should germinate no later than the end of October in southern Korea. The dry weight of vetch plants increased with the progress of vetch growth until the flowering stage but N content decreased for 30 days from before the flowering stage (2.9%) until the ripening stage (1.8%). We concluded that Chinese milk vetch could have an effect on weed control before the flowering stage, sustainability without re-sowing of seed annually, and effective green manure for rice pre-crop in no-till direct-sown rice-vetch relay cropping systems.

  • PDF

Effects of Soil Moisture Stress at Different Growth Stage on Growth, Yield and Quality in Rice

  • Park, Hong-Kyu;Choi, Weon-Young;Kang, Si-Yong;Kim, Young-Doo;Choi, Won-Yul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.143-148
    • /
    • 1999
  • Soil moisture condition is an important limiting factor in growth and yield in rice culture. The purpose of this study was to compare the influence on the growth, yield and Quality of rice subjected to soil moisture stress (SMS) at different growth stages. Ajaponica rice cultivar, Dongjinbyeo, was cultured under flooded conditions in a plastic container filled with silty loam soil. The container was subjected to SMS until the initial wilting point (IWP) coincided with about 10% in soil moisture content and about-200 kPa in soil matric potential, and was then irrigated again, at 6 and 5 of main growth stage in 1996 and 1997, respectively. At maturity, the plant height, tiller number, leaf area and top dry weight were decreased more in SMS treatments at the early stage than the late stage. The averaged yield index of SMS to control in both years was lowest at meiosis (62.5%), which primarily resulted from lower percent ripened grain and 1,000 grain weight, and second' reduced the spikelet number per panicle and panicle number per hill, and followed at tillering stage (68.5%) which resulted from the lower production in tiller number and top dry matter during and after SMS treatment. The percent-age of read rice in SMS plants varied with the treatment stage as order of lower at meiosis (44.0%), heading (53.9%), panicle initiation (70.1%), tillering (72.1%), ripening (75.8%) and 5 days after transplanting (DAT) (79.0%). Protein content in brown rice was slightly larger in SMS at late growth stage than the control, while the contents of fat and ash differed very little between SMS and control. Contents of Mg and K and Mg/K in brown rice with SMS were lower at some treatment stages such as at ripening or panicle initiation.

  • PDF

Characterization of a Tomato (Lycopersicon esculentum Mill.) Ripening-associated Membrane Protein (TRAMP) Gene Expression and Flavour Volatile Changes in TRAMP Transgenic Plants

  • Kim Seog-Hyung;Ji Hee-Chung;Lim Ki-Byung
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2005
  • The tomato ripening associated membrane protein (TRAMP) (Fray et al., 1994) is a member of the major intrinsic protein (MIP) family, defined as channels facilitating the passage of water and small solutes through membranes. During normal fruit ripening the TRAMP mRNA levels were increased whereas the expression levels of TRAMP in low ethylene ACO1-sense suppressed lines, Nr and rin fruits, were lower than at the breaker stage of wild type fruit. TRAMP mRNA is inhibited by $LaCl_3$, which is an inhibitor of $Ca^{2+}$-stimulated responses, treatment but drought condition did not affect TRAMP expression. The levels of TRAMP mRNA transcripts were substantially higher in the dark treated seedlings and fruits. These suggest that TRAMP function as a water channel may be doubted because of several reasons; no water content was changed during ripening in wild type, antisense and overexpression lines, TRAMP expression under light condition was lower than dark condition and TRAMP expression was not changed in drought condition. Co-suppression plant, 3588 was one of sense suppression lines, which contain CaMV 35S promoter and sense pNY507 cDNA, produced small antisense RNA, approximately 21-25 nucleotides in length, mediated post-transcriptional gene silencing. Therefore, TRAMP expression was inhibited by small antisense and multiple copies might induce gene silencing without any production of double strand RNA. Total seven selected volatile productions, isobutylthiazole, 6-methyl-5-hepten-2-one, hexanal, hexenal methylbutanal, hexenol, and methylbutanol, were highly reduced in sense line whereas total volatile production was increased in TRAMP antisense line. These results suggested TRAMP might change volatile related compounds.

A Study on the Changes of Free Amino Acid Composition in Seeds of Korean Mung Bean During the Ripening Process (한국산(韓國産) 녹두(綠豆)의 성숙과정중(成熟過程中) 유리(遊離) Amino Acid 함량(含量) 변화(變化)에 관(關)한 연구(硏究))

  • Ko, Mu-Suk
    • Journal of Nutrition and Health
    • /
    • v.13 no.3
    • /
    • pp.150-154
    • /
    • 1980
  • For the purpose of clarifying the changes of free amino acid content in seeds of Korean mung bean during the ripening process, samples ranging in five stages-10, 15, 20, 25 and 30 days after blooming were collected. The results obtained were as follows: 1) Amino acids detected in the first stage were lysine, histidine, arginine, cystine, aspartic acid, threonine (including serine), glutamic acid, valine, methionine sulfoxide and methionine sulfone. 2) In the second stage (15 days after blooming) more amino acids such as glycine, isoleucine, tyrosine, phenylalaninc, and methionine were detected in addition to those in the first stage. More methionine was appeared, while the level of methionine sulfoxide and methionine sulfone was decreased. 3) In the 3rd stage leucine was first detected. The level of leucine was increased slowly as the seed was being ripened. After 4th stage methionine sulfoxide and methionine sulfone were not detected, while the level of methioniene was steadily increased. 4) After 20 days the levels of lecuine, valine. isoleucine, and methionine were increased, while the others were either decreased or remained at the same level.

  • PDF