DOI QR코드

DOI QR Code

Effect of High Temperature on Leaf Physiological Changes as Chlorophyll composition and Photosynthesis Rate of Rice

벼 등숙기 고온이 잎의 엽록소구성과 광합성 및 생리적 변화에 미치는 영향

  • 손지영 (농촌진흥청 국립식량과학원) ;
  • 김준환 (농촌진흥청 국립식량과학원) ;
  • 이충근 (농촌진흥청 국립식량과학원) ;
  • 양운호 (농촌진흥청 국립식량과학원)
  • Received : 2015.05.15
  • Accepted : 2015.07.01
  • Published : 2015.09.30

Abstract

High temperature impairs rice grain yield and quality. To understand the effect of high temperature on leaf physiological activity and grain filling, two cultivars of rice that Dongan and Ilpum were exposed to high temperature during ripening stage. Grain filling rate, perfect grain ratio and grain weight of high temperature ($27^{\circ}C{\pm}4^{\circ}C$) treated both rice cultivars were decreased than those of control temperature ($22^{\circ}C{\pm}4^{\circ}C$) treated. The reduction rates of grain filling ratio, perfect grain ratio and grain weight of high temperature treated to control treated rice were higher in Ilpum than Dongan. Chlorophyll contents of rice leaves under high temperature at early ripening stage were higher than those of control temperature, but those were slowly decreased with no difference between temperature treatment since at mid ripening stage. Although chlorophyll a/b ratio under high temperature was decreased from heading to 15 days after heading, that was gradually increased since 15 days after heading. Protein concentrations of rice leaves for ripening stage was a similar pattern with chlorophyll changes. The rate of photosynthesis at 14 days after heading under high temperature was higher than those of control temperature, but there was no difference at those of 7 and 34 days after heading between two temperature treatment. Free sugars under high temperature treated leaves were lower than control temperature. Consequently, these results exhibit that high temperature accelerate leaf physiological activity as chlorophyll synthesis and photosynthesis rate unlike the deterioration of grain filling.

등숙기 고온이 잎의 생리적 활력과 등숙에 미치는 영향을 알아보고자, 동안과 일품 두 품종을 등숙기에 고온 처리하여 등숙 형질을 분석하고, 잎의 광합성, 엽록소 함량 및 엽록소 a/b율 등을 알아보았다. 등숙기 고온($27{\pm}4^{\circ}C$)처리에서 두 품종 모두 등숙률, 완전립률, 천립중이 감소하였으나 일품은 동안에 비해 모두 감소율이 컸다. 엽록소 함량은 등숙초기 고온에서 적온보다 두 품종 모두 증가하였으며, 등숙중기이후 엽록소감소양상은 온도처리에 따른 차이가 없었다. 엽록소 a/b율은 고온에서 감소하였다가 출수후 15일 이후 증가하였으며 적온에서는 출수 이후 지속적으로 증가하였다. 잎의 단백질농도 변화는 고온에서 등숙초기 약간 높은 경향이었으나 이후 처리 간 차이없이 등숙후기까지 지속적으로 감소하였다. 최대 광합성량은 유숙기인 출수 후 14일에 고온이 적온보다 높았고 출수후 7일과, 등숙후기(출수후 34일)에는 유의한 차이가 없었다. 잎의 유리당 함량은 고온이 적온보다 낮았다. 결론적으로 등숙기 고온은 잎의 생리적 활력을 적온보다 오히려 증가 시켜 엽록소함량과 광합성율이 증가하였으므로, 고온에 의한 이삭의 등숙저하는 이삭으로의 전류나 전분축적기작 과정의 문제가 더 클 것으로 생각된다.

Keywords

References

  1. Beneragama, C. K. and K. Goto. 2010. Chlorophyll a:b ratio increases under low-light in 'shade-tolerant' Euglena gracilis. Tropical Agricultural Research 22(1) : 12-25.
  2. Choi, K., T. Park, C. Lee, J. Kim, J. Kim, K. Ha, W. Yang, C. Lee, K. Kwak, H. Park, J. Nam, J. Kim, G. Han, Y. Cho, Y. Park, S. Han, J. Kim, S. Lee, H. Choi, S. Cho, H. Park, D. Ahn, W. Joung, S. Han, S. Kim, K. Jang, S. Oh, W. Seo, J. Ra, J. Kim, and H. Kang. 2011. Effect of temperature during grain filling stage on grain quality and taste of cooked rice in mid-late maturing rice varieties. Korean J. Crop Sci. 56(4) : 404-412. https://doi.org/10.7740/kjcs.2011.56.4.404
  3. Falqueto, A. R., D. Cassol, A. M. de Magalhaes Jr., A. C. de Oliveira, and M. A. Bacarin. 2009. Physiological analysis of leaf senescence of two rice cultivars with different yield potential. Pesq. agropec. bras., Brasilia. 44(7) : 695-700. https://doi.org/10.1590/S0100-204X2009000700007
  4. Fu, J. D., Y. F. Yan, and B. W. Lee. 2009. Physiological characteristics of a functional stay-green rice "SNU-SG1" during grain filling period. J. Cop. Sci. Biotech. 12 : 47-52. https://doi.org/10.1007/s12892-009-0078-8
  5. Gelang, J., H. Pleijel, E. Slid, H. Danielsson, S. Younis, and G. Sellden. 2000. Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum) exposed to different concentrations of ozone. Physiol Plant 110 : 366-375. https://doi.org/10.1034/j.1399-3054.2000.1100311.x
  6. Humbeck, K., S. Quast, and K. Krupinska. Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ. 19 : 337-344. https://doi.org/10.1111/j.1365-3040.1996.tb00256.x
  7. Hidema, J., A. Makino, T. Mae, and K. Ojima. 1991. Photosynthesic characteristics of rice leaves aged under different irradiances from full expansion through senesecece. Plant Physiology 97 : 1287-1293. https://doi.org/10.1104/pp.97.4.1287
  8. Hiscox, J. D. and G. F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany. 57 : 1332-1334. https://doi.org/10.1139/b79-163
  9. Kang, Z., G. Li, J. Huang, X. Niu, H. Zou, G. Zang, and G. Wang. 2012. Photosynthetic and physiological analysis of the rice high-chlorophyll mutant(Gc). Plant physiology and biochemistry 60 : 81-87. https://doi.org/10.1016/j.plaphy.2012.07.019
  10. Kim, J., J. Shon, C. K. Lee, W. Yang, Y. Yoon, W. H. Yang, Y. G. Kim, and B. W. Lee. 2011. Relationship between grain filling duration and leaf senescence of temperature rice under high temperature. Field crop research 122 : 207-213. https://doi.org/10.1016/j.fcr.2011.03.014
  11. Kim, J., J. Shon, Y. Yoon, K. J. Choi, and C. K. Lee. 2013. Study on improving high-temperature tolerance for grain filling through adjusting sink size. Korean J. Crop Sci. 58(2) : 107-112. https://doi.org/10.7740/kjcs.2013.58.2.107
  12. Kim, K. 1983. Studies on the effect of temperature during the reduction division and the grain filling stage in rice plants. II. Effect of air temperature at grain filling stage in indica-japonica crosses. Korean J. Crop Science 28 : 58-75.
  13. Kura-Hotta, M., K. Satoh, and S. Kathh. 1987. Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant cell physiology 28(7) : 1321-1329.
  14. Lee, C. K., K. S. Kwan, J. Kim, J. Shon, and W. Yang. 2011. Impacts of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean J. Crop Science 56(3) : 233-243. https://doi.org/10.7740/kjcs.2011.56.3.233
  15. Morita, S. H. Shiratsuchi, J. Takahashi, and K. Fujita. 2004. Effect of high temperature on grain ripening in rice plants: Analysis of the effects of high night and high day temperature applied to the panicle and other parts of the plant. Japanese Journal of Crop Science. 73(1) : 77-83. https://doi.org/10.1626/jcs.73.77
  16. Murata, Y. 1964. Influence of radiation and air temperature upon the localization of paddy in japan. Proc. Crop Sci. Soc. Jpn 33 : 59-63. https://doi.org/10.1626/jcs.33.59
  17. Murchie, E., Y. Chen, S. Hubbart, S. Peng, and P. Horton. 1999. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in fieldgrown rice. Plant physiology 119 : 553-563. https://doi.org/10.1104/pp.119.2.553
  18. Park, J. H. and B. W. Lee. 2003. Genotypic difference in leaf senescence during grain filling and its relation to grain yield of rice. Korean J. crop Sci. 48(3) : 224-231.
  19. Peng, S., J. Huang, J. E. Sheely, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. PNAS 101(27) : 9971-9975. https://doi.org/10.1073/pnas.0403720101
  20. Seo, S., S. Camura, and T. Hayakwa. 1981. Panicle senescence and its prevention in rice plnat:1. A decrease in dehydrogenase activity in spikelets follwing the progress of ripening and its varietal difference. Jpn. J. Crop. Sci. 50 : 91-97. https://doi.org/10.1626/jcs.50.91
  21. Shon, J. 2011. Physio-biochemical characterization and transcript profiling of hypoxia- and anoxia-tolerant rice during germination and early seedling growth. Chonbuk National University. Ph. D. Thesis pp. 56-57.
  22. Tang, Y., X. Wen, and C. Lu. 2005. Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiology and Biochemistry 43 : 193-201. https://doi.org/10.1016/j.plaphy.2004.12.009
  23. Tashiro, T. and I. Wardlaw. 1991. The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice. Aust. J. Plant Physiol. 18 : 259-265. https://doi.org/10.1071/PP9910259
  24. Yamakawa, H., T. Hirose, M. Kuroda, and T. Yamaguchi. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature usin DNA Microarray. Plant Pysiol. 144 : 258-277.
  25. Yang, J., J. Zhang, Z. Wang, Q. Zhu, and W. Wan. 2001. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol. 127 : 315-323. https://doi.org/10.1104/pp.127.1.315
  26. Yang, W. 2006. Physiological characterization of high yielding genotypes of rice (Oriza sativa L.) in the tropical irrigated system. University of philippines at Los Banos. Ph. D. Thesis. pp. 51-52.
  27. Wakamatus, K., O. Sasaki, I. Uezono, and A. Tanaka. 2007. Effects of high air temperature during the ripening period on the grain quality of rice in warm regions of Japan. Jpn. J. Crop. Sci. 76 : 71-78. https://doi.org/10.1626/jcs.76.71
  28. Weng, X., H. Xu, and D. A. Jiang. 2005. Characteristics of gas exchange, chlorophyll fluorescence and expression of key enzymes in photosynthesis during leaf senescence in rice plants. J. Int. Plant Biology 47(5) : 60-566. https://doi.org/10.1111/j.1744-7909.2005.00011.x

Cited by

  1. Analysis of the impact of heat on new camellias using nondestructive methods vol.40, pp.5, 2018, https://doi.org/10.1007/s11738-018-2662-3
  2. 온도구배야외챔버를 이용한 고온에서의 벼 생육반응 및 수량성 평가 vol.20, pp.1, 2015, https://doi.org/10.5532/kjafm.2018.20.1.135
  3. Ripening Characteristics and Antioxidant Enzyme Activity of Ilmi under Heat Stress Condition vol.63, pp.2, 2015, https://doi.org/10.7740/kjcs.2018.63.2.112
  4. Combined and single effects of elevated CO2 and temperatures on rice bakanae disease under controlled conditions in phytotrons vol.70, pp.4, 2015, https://doi.org/10.1111/ppa.13338
  5. Climatic constraints to yield and yield components of temperate japonica rice vol.113, pp.4, 2021, https://doi.org/10.1002/agj2.20689