• Title/Summary/Keyword: rip currents

Search Result 28, Processing Time 0.024 seconds

Numerical study for classifying generation types of rip currents at the beaches of the East Sea coast (수치모의를 통한 동해안 해수욕장의 이안류 발생 형태 분류 연구)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.645-655
    • /
    • 2022
  • Recently rip currents are frequently observed in the summer at the beaches located along the East Sea coast. To understand the generation types of rip currents occurred at the Ease Sea beaches, numerical simulations of rip currents over the topographies of the Sokcho, Naksan, Gyeongpo, Mangsang beaches were performed by using a Boussinesq-type wave and current model, FUNWAVE. The offshore and nearshore topographically-controlled rip currents and the transient rip currents were well reproduced due to the alongshore non-uniformities involving the phase interaction effects. This study looked over the generation types of rip currents to occur at the beaches with complicated field bathymetries.

Nearshore Current Pattern and Rip Current Occurrence at Jungmun Beach, Jeju by Numerical Computation

  • An, Seung-Hyun;Kim, Nam-Hyeong
    • Journal of Navigation and Port Research
    • /
    • v.41 no.2
    • /
    • pp.55-62
    • /
    • 2017
  • A nearshore current or a wave-induced current is an important phenomenon in a nearshore zone, which is composed of longshore, cross-shore, and rip currents. The nearshore current is closely related to the occurrence of coastal accidents by beachgoers. A considerable number of coastal accidents by beachgoers involving the rip current have been reported at Jungmun Beach. However, in studies and observations of the nearshore current of Jungmun Beach, understanding of the rip current pattern remains unclear. In this study, a scientific approach is taken to understand the nearshore current and the rip current patterns at Jungmun Beach by numerical computation for year of 2015. From results of numerical computation, the occurrence and spatial characteristics of the rip current, and the similarities between the rip current and incident wave conditions are analyzed. The primary results of this study reveal that the rip currents are frequently generated at Jungmun Beach, especially in the western parts of the beach, and that the rip currents often occur with a wave breaking height of around 0.5 ~ 0.7 m, a wave period of around 6 ~ 8 seconds, and a breaking angle of around 0 ~ 15 degrees.

Physical Environments of Suyong Bay during the Rip Current Events at Haeundae - August 2009 (해운대 이안류 발생 시 수영만의 물리환경 - 2009년 8월)

  • Lee, J.C.;Kim, D.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.110-114
    • /
    • 2010
  • A data set of current, wind and wave height measured at the monitoring buoy and sea level at Busan harbor were analyzed to explain the physical conditions during the strong rip current events at Haeundae Beach of Suyeong Bay during 13~15 August 2009. Tidal current, with spring-neap variations, has similar average speed to the short-term non-tidal currents. The common features at the time of rip currents are the strong northeasterly wind and superposition of tidal and non-tidal currents both flowing toward the coast. However on 14 August when the rip current did not occur, tide and wave height were similar to the rip-current cases but the tidal and non-tidal current were to nearly opposite directions. While strong winds produce large waves thus the basic condition for rip current but its influence on the local circulation in the bay is relatively small. Of the three adjacent beaches, only at Haeundae the rip currents are reported. This difference may be due to the unique bottom topography featured by underwater hill in the central region off Haeundae which can decay the incoming waves, tides and currents to intensify the rip current.

A Numerical Study of Rip Current Generation Modulated with Tidal Elevations at the Daecheon Beach (큰 조차에 따라 변화하는 지형의 대천 해수욕장 이안류 발생 특성 수치모의 연구)

  • Junwoo, Choi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.247-257
    • /
    • 2022
  • In order to investigate the generations of rip currents modulated with the tidal elevations at a mega-tidal beach at the West Sea coast, numerical simulations of rip currents over the topography of the Daecheon beach were performed by using a Boussinesq-type wave and current model, FUNWAVE. The mega-tidal coast includes rocky outcrops (i.e., reefs) lying over or under the water surface according to the tidal elevations in the offshore and nearshore bathymetry. The offshore topographically-controlled rip currents were well reproduced due to the alongshore non-uniformities transformed by the tide-modulated topography. This study addressed the generation types of rip currents to occur at the mega-tidal coast with the tide-modulated outcrops and reefs.

Automatic Detection and Analysis of Rip Currents at Haeundae Beach using X-band Marine Radar (항해용 X-band 레이다를 이용한 해운대해수욕장 이안류 자동탐지 및 특성 분석)

  • Oh, Chanyeong;Ahn, Kyungmo;Cheon, Se-Hyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.485-492
    • /
    • 2019
  • The observation system has been developed to investigate the rip currents at Haeundae beach using X-band marine radar. X-band radar system can observe shape, size, and velocity of rip currents, which is difficult to obtain through field observation by conventional device. Algorithms which automatically detect locations, shapes, and magnitudes of rip currents were developed using time averaged X-band radar sea clutter images. X-band sea clutter images are transformed through 3D FFT into 2D wave number spectrum and frequency spectrum. Rip current velocities were estimated using differences in wave-number spectra and wave frequency spectra due to Doppler shift. The algorithm was verified by drift experiments. At Haeundae beach, the radar system exactly located the rip currents and found to be sustained for 1-2 days at fixed locations.

Numerical Simulations of Rip Currents Under Phase-Resolved Directional Random Wave Conditions (위상을 포함한 다방향 불규칙파 조건에서의 이안류 수치모의)

  • Choi, Junwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.238-245
    • /
    • 2015
  • Recently, Choi et al.(2015) showed that a numerical simulation of the SandyDuck experiment under a directional random wave environment agreed well with the experimental data including the wave height distribution of the random waves, the well-developed longshore current and its energetic fluctuation. Based on the Boussinesq modeling, this study investigates the effect of the alongshore variations, which are induced by not only the field topography but also the phase interaction of multidirectional random waves in the surf zone wave field, on the rip currents. As a result, transient rip currents as well as topographical rip currents cause the complicated surfzone circulation and mixing process due to their interactions in a multi-directional random wave condition while the topographical rip currents are dominant in a monochromatic wave condition.

Rip Current Sensitive Analysis Using Rose Diagram for Wave-Induced Current Vectors at Haeundae Beach, Korea (해빈류 벡터 장미도를 통한 해운대 해수욕장의 이안류 민감도 분석)

  • Kim, Dong Hee;Lee, Sahong;Lee, Jung Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.320-326
    • /
    • 2016
  • Rip current forecasts, based on intensity, are marked in four levels—notice, watch, warning, and danger. However, numerical results are represented by current vectors, whose magnitudes are then converted into predictive levels. In the present study, the rose diagram is adapted as a determinative forecasting index and examined for the case of an ideal rip channel consisting of surface, bottom, and averaged currents. Further, it is employed in the sensitivity analysis of wave-induced currents generated by wave conditions at the Haeundae Beach. The simulation of surface onshore and bottom undertow currents is accomplished by including a mass flux term in the wave-averaged continuity equation.

A numerical study on rip currents at the Haeundae coast changed after the beach nourishment (양빈 후 지형변화에 따른 해운대 이안류 수치모의)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.669-678
    • /
    • 2022
  • The Haeundae beach and coast suffered synthetical dramatic changes especially in the nearshore topography by the beach nourishment project (i.e., 2013-2015). A previous study showed the rip current characteristics were changed according to the topographical change in terms of their magnitudes and likelihoods through numerical simulations using the FUNWAVE model. The magnitude and likelihood of rip currents decreased because the surfzone width decreased just after the beach nourishment. In this study, however, numerical simulations of the Haeundae rip currents were performed by using the 2017- and 2020-surveyed topographies changed for several years after the beach nourishment. From the simulation results using the topographies surveyed before and after the beach nourishment, it was found that the magnitude and likelihood of rip currents increased due to its increasing surfzone width in 2017 and 2020 and they might be increasing larger than those before the beach nourishment.

Rip Currents Generation and Longshore Currents behind Bars (이안류 생성 원인 및 연안사주 지형에서의 연안류 생성)

  • Oh, Tae-Myoung;Robert G. Dean
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.91-107
    • /
    • 1995
  • In this paper, previously proposed mechanisms of generation and maintenance of rip currents are grouped into three broad categories; (1) prismatic topography models, (2) non-prismatic topography models and (3) structural controls by natural and/or constructed features, such as headlands, piers. groins, jetties. etc. The prismatic models can explain the occurrence of a rip current on a planar beach, while non-prismatic model needs undulatory topography inside the surf zone to generate and maintain a rip current. Yet more detailed and thorough studies need to be conducted to include all relevant variables and to clarify the mechanism(s) governing rip current. Next a simple model is presented to predict mean longshore currents behind a longshore bar (or submerged breakwaters) by considering mass transport over the bar and the bar morphology. This hydrodynamic model could be extended to include the sedimentary feedback mechanism.

  • PDF

Wave Transformation with Wave-Current Interaction in Shallow Water (천해역(淺海域)에서 파(波)와 흐름의 상호작용(相互作用)에 의한 파랑변형(波浪變形))

  • Lee, Jong Kyu;Lee, Jong In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.77-89
    • /
    • 1991
  • Based on Boussinesq equation, the parabolic approximation equation is used to analyse the propagation of shallow water waves with currents over slowly varying depth. Rip currents (jet-like) occur mainly in shallow waters where the Ursell parameter significatly exceeds the range of application of Stokes wave theory. We employ the nonlinear parabolic approximation equation which is valid for waves of large Ursell parameters and small scale currents. Two types of currents are considered; relatively strong and relatively weak currents. The wave propagating over rip currents on a sloping bottom experiences a shoaling due to the variations of depth and current velocity as well as refraction and diffraction due to the vorticity of currents. Numerical analyses for a nonlinear theory are valid before the breaking point.

  • PDF