Browse > Article
http://dx.doi.org/10.9765/KSCOE.2015.27.4.238

Numerical Simulations of Rip Currents Under Phase-Resolved Directional Random Wave Conditions  

Choi, Junwoo (Coastal Research Laboratory, Korea Inst. of Civil Eng. & Building Tech.)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.27, no.4, 2015 , pp. 238-245 More about this Journal
Abstract
Recently, Choi et al.(2015) showed that a numerical simulation of the SandyDuck experiment under a directional random wave environment agreed well with the experimental data including the wave height distribution of the random waves, the well-developed longshore current and its energetic fluctuation. Based on the Boussinesq modeling, this study investigates the effect of the alongshore variations, which are induced by not only the field topography but also the phase interaction of multidirectional random waves in the surf zone wave field, on the rip currents. As a result, transient rip currents as well as topographical rip currents cause the complicated surfzone circulation and mixing process due to their interactions in a multi-directional random wave condition while the topographical rip currents are dominant in a monochromatic wave condition.
Keywords
SandyDuck experiment; rip current; directional random waves; Boussinesq modeling; FUNWAVE;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Choi, J., Lim, C.H., Lee, J.I. and Yoon, S.B. (2009). Evolution of waves and currents over a submerged laboratory shoal, Coastal Engineering, 56(3), 297-312.   DOI
2 Choi, J. and Yoon, S.B. (2009). Numerical simulations using momentum source wave-maker applied to RANS equation model, Coastal Engineering, 56, 1043-1060.   DOI   ScienceOn
3 Choi, J., Park, W.K. and Yoon, S.B. (2011) Boussinesq Modeling of a Rip Current at Haeundae Beach. J. of Korean Society of Coastal and Ocean Engineers, 23(4), 276-284 (in Korean).   DOI   ScienceOn
4 Choi, J. and Yoon, S.B. (2011). Numerical simulation of nearshore circulation on a field topography in a random wave environment, Coastal Engineering, 58, 395-408.   DOI
5 Choi, J., Lee, J.I. and Yoon, S.B. (2012a). Surface roller modeling for mean longshore current over a barred beach in a random wave environment, J. Coastal Research, 28(5), 1100-1120.
6 Choi, J., Park, W.K., Bae, J.S. and Yoon, S.B. (2012b) Numerical Study on a Dominant Mechanism of Rip Current at Haeundae Beach : Honeycomb pattern of waves. J. of the Korean Society of Civil Engineers, 32(5B), 321-320 (in Korean).   DOI   ScienceOn
7 Choi, J., Lim, C.H. and Yoon, S.B. (2013a). Study of Rip Current Warning Index Function varied according to Real-time Observations. J. of Korea Water Resources Association, 46(5), 477-490 (in Korean).   DOI   ScienceOn
8 Choi, J., Shin, C.H. and Yoon, S.B. (2013b) Numerical Study on Sea State Parameters Affecting Rip Current at Haeundae Beach : Wave Period, Height, Direction and Tidal Elevation. Journal of Korea Water Resources Association, 46(2), 205-218 (in Korean).   DOI   ScienceOn
9 Choi, J., Kirby, J.T. and Yoon, S.B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions, Coastal Engineering, 101, 17-34.   DOI
10 Clark, D. B., Elgar, S. and Raubenheimer, B. (2012). Vorticity generation by short-crested wave breaking, Geophys. Res. Lett., (39), L24604, doi:10.1029/2012GL 054034.
11 Feddersen, F. (2014). The generation of surfzone eddies in a strong alongshore current, J. Phys. Oceanogr., 44, 600-617.   DOI
12 Goda, Y. (2006). Examination of the influence of several factors on longshore current computation with random waves, Coastal Engineering, 53, 157-170.   DOI
13 Haas, K. A. and Svendsen, I.A. (2002). Laboratory measurements of the vertical structure of rip currents, J. Geophys. Res., 107(C5), 3047.   DOI
14 Haller, M.C., Honegger, D. and Catalan, P.A. (2014). Rip current observations via Marine Radar. Journal of waterway, port, coastal, and ocean engineering, 140(2), 115-124.   DOI
15 Johnson, D. and Pattiaratchi, C. (2006). Boussinesq modelling of transient rip currents, Coastal Engineering, 53, 419-439.   DOI
16 Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1D, Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39-47.   DOI
17 Kirby, J.T., Chen, Q., Noyes, T.J., Elgar, S. and Guza, R.T. (2003). Evaluating the low frequency predictions of a Boussinesq wave model: Field cases, Proc. ISOPE-2003, Honolulu, May 25-30, 398-404.
18 Long, J.W. and Ozkan Haller, H.T. (2009). Low-frequency characteristics of wave group-forced vortices, J. Geophys. Res., 114, C08004, doi:10.1029/2008JC004894.   DOI
19 Longuet-Higgins, M.S. and Stewart, R.W. (1962). Radiation stress and mass transport in gravity waves with application to 'surfbeats', Journal of Fluid Mechanics, 8, 565-583.
20 Longuet-Higgins, M.S. (1970). Longshore currents generated by obliquely incident sea waves: Parts 1 and 2, Journal of Geophysical Research, 75, 6778-6801.   DOI
21 Longuet-Higgins, M.S. and Stewart, R.W. (1964). Radiation stress in water waves, a physical discussion with application, Deep Sea Research, 11, 529-563.
22 MacMahan, J.H., Thornton, E.B., Stanton, T.P. and Reniers, A.J.H.M. (2005). RIPEX: Observations of a rip current system, Marine Geology, 218, 113-134.   DOI
23 Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T. and Rikiishi, K. (1975). Observations of the directional spectrum of ocean waves using a cloverleaf buoy, Journal of Physical Oceanography, 5, 750-760.   DOI
24 Noyes, T.J., Guza, R.T., Elgar, S. and Herbers, T.H.C. (2004). Field observations of shear waves in the surfzone, Journal of Geophysical Research, 109, C01031, doi:10.1029/2002 JC001761.   DOI
25 Noyes, T.J. (2002). Field observations of shear waves, Ph.D. thesis, Scripps Institution of Oceanography, La Jolla.
26 Ozkan-Haller, H.T. and Kirby, J.T. (1999). Nonlinear evolution of shear instabilities of the longshore current: A comparison of observations and computations, J. Geophys. Res., Oceans, 104, 25953-25984.   DOI
27 Peregrine, D.H. (1998). Surf zone currents, Theor. Comput. Fluid Dyn., 10, 295-309.   DOI
28 Peregrine, D.H. (1999). Large-scale vorticity generation by breakers in shallow and deep water, Eur. J. Mech. B Fluids, 18, 403-408, doi:10.1016/S0997-7546(99)80037-5.   DOI
29 Thornton, E.B. (1970). Variation of longshore current across the surf zone, Proceedings of the 12th Coastal Engineering Conference, 291-308.
30 Sorensen, O.R., Schaffer, H.A. and Madsen, P.A. (1998). Surf zone dynamics simulated by a Boussinesq type model. III. Waveinduced horizontal nearshore circulations, Coastal Engineering, 33 (2), 155-176.
31 Thornton, E.B. and Guza, R.T. (1986). Surf zone longshore currents and random waves: field data and models, Journal of Physical Oceanography, 16, 1165-1178.   DOI
32 Van Dongeren, A.R., Reniers, A.J.H.M., Battjes, J.A. and Svendsen, I.A. (2003). Numerical modeling of infragravity wave response during DELILAH, Journal of Geophysical Research, 108, 3288, doi:10.1029/2002JC001332.   DOI
33 Yoon, S.B., Kwon, S.J., Bae, J.S. and Choi, J. (2012). Investigation of Characteristics of Rip Current at Haeundae Beach based on Observation Analysis and Numerical Experiments. J. of the Korean Society of Civil Engineers, 23(4B), 243-251 (in Korean).
34 Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves: Part 1: Highly nonlinear unsteady waves, Journal of Fluid Mechanics, 294, 71-92.   DOI   ScienceOn
35 Wei, G., Kirby, J.T. and Sinha, A. (1999). Generation of waves in Boussinesq models using a source function method, Coastal Engineering, 36, 271-299.   DOI
36 Chen, Q., Dalrymple, R.A., Kirby, J.T., Kennedy, A.B. and Haller, M. (1999). Boussinesq modelling of a rip current system, Journal of Geophysical Research, 104, 20617-20637.   DOI
37 Battjes, J.A. (1972). Setup due to irregular wave, Proceedings of the 13th Coastal Engineering Conference, Vancouver, ASCE, 1993-2004.
38 Bowen, A.J. (1969a). The generation of longshore currents on a plane beach, Journal of Marine Research, 27, 206-215.
39 Bowen, A.J. (1969b). Rip currents, Part 1: Theoretical investigations, Journal of Geophysical Research, 74, 5467-5478.   DOI
40 Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A.B. and Chawla, A. (2000). Boussinesq modeling of wave transformation, breaking and runup II: two horizontal dimensions, Journal of Waterway, Port, Coastal and Ocean Engineering, 126(1), 48-56.   DOI
41 Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F. and Thornton, E.B. (2003). Boussinesq modeling of longshore current, Journal of Geophysical Research, 108(C11), 26-1-26-18.