DOI QR코드

DOI QR Code

양빈 후 지형변화에 따른 해운대 이안류 수치모의

A numerical study on rip currents at the Haeundae coast changed after the beach nourishment

  • 최준우 (한국건설기술연구원 수자원하천연구본부)
  • Choi, Junwoo (Coastal Research Laboratory, Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering & Building Technology)
  • 투고 : 2022.07.18
  • 심사 : 2022.08.29
  • 발행 : 2022.09.30

초록

연안정비사업으로 추진된 해운대 해수욕장의 대규모 양빈(2013~2015)으로 해운대 해변의 해안선 및 수심지형에 급한 인위적 변동이 있었다. 기존 연구에서는 양빈 직, 전후의 수심지형을 입력 조건으로 Boussinesq 방정식 모형인 FUNWAVE를 이용하여 수치모의를 수행, 수심지형 변화에 따른 이안류 발생 특성을 분석하였다. 양빈 직후 쇄파대 폭의 감소로 이안류의 강도 및 발생정도가 감소하였다. 본 연구에서는 대규모 양빈 후 수년이 지난 2017년 및 2020년에 다시 측량된 수심지형을 이용하여 동일한 조건으로 수치모의를 수행하여 결과를 제시하였다. 그리고 양빈 전 및 직후, 그리고 수년이 지난 후의 해운대 이안류를 비교하였다. 시간이 지남에 따라 단면경사가 완만해 지고 쇄패대 폭이 증가되어 이안류의 강도와 발생정도가 다시 증가하고 있다고 판단된다.

The Haeundae beach and coast suffered synthetical dramatic changes especially in the nearshore topography by the beach nourishment project (i.e., 2013-2015). A previous study showed the rip current characteristics were changed according to the topographical change in terms of their magnitudes and likelihoods through numerical simulations using the FUNWAVE model. The magnitude and likelihood of rip currents decreased because the surfzone width decreased just after the beach nourishment. In this study, however, numerical simulations of the Haeundae rip currents were performed by using the 2017- and 2020-surveyed topographies changed for several years after the beach nourishment. From the simulation results using the topographies surveyed before and after the beach nourishment, it was found that the magnitude and likelihood of rip currents increased due to its increasing surfzone width in 2017 and 2020 and they might be increasing larger than those before the beach nourishment.

키워드

과제정보

본 연구는 해양수산부 국립해양조사원의 "실시간 이안류 감시시스템 확대 및 서비스" 사업의 지원으로 수행되었습니다.

참고문헌

  1. Chen, Q., Dalrymple, R.A., Kirby, J.T., Kennedy, A.B., and Haller, M. (1999). "Boussinesq modelling of a rip current system." Journal of Geophysical Research, Vol. 104, pp. 20617-20637. https://doi.org/10.1029/1999JC900154
  2. Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A.B., and Chawla, A. (2000). "Boussinesq modeling of wave transformation, breaking and runup II: two horizontal dimensions." Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 126, No. 1, pp. 48-56. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(48)
  3. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F., and Thornton, E.B. (2003). "Boussinesq modeling of longshore current." Journal of Geophysical Research, Vol. 108, No. C11, pp. 26-1-26-18.
  4. Choi, J. (2015a). "Numerical simulations of rip currents under phaseresolved directional random wave conditions." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 27, No. 4, pp. 238-245 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.238
  5. Choi, J. (2015b). "Numerical study on rip current likelihood according to the beach nourishment in the Haeundae Coast." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 5, pp. 239-246 (in Korean). https://doi.org/10.9798/KOSHAM.2015.15.5.239
  6. Choi, J., and Roh, M. (2021). "A laboratory experiment of rip currents between the ends of breaking wave crests." Coastal Engineering, Vol. 164, 103812.
  7. Choi, J., Kirby, J.T., and Yoon, S.B. (2015). "Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions." Coastal Engineering, Vol. 101, pp. 17-34. https://doi.org/10.1016/j.coastaleng.2015.04.005
  8. Choi, J., Park, W.K., Bae, J.S., and Yoon, S.B. (2012). "Numerical study on a dominant mechanism of rip current at Haeundae Beach: Honeycomb pattern of waves." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5B, pp. 321-320 (in Korean).
  9. Choi, J., Shin, C.H., and Yoon, S.B. (2013). "Numerical study on sea state parameters affecting rip current at Haeundae Beach: Wave period, height, direction and tidal elevation." Journal of Korea Water Resources Association, Vol. 46, No. 2, pp. 205-218 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.2.205
  10. Clark, D.B., Elgar, S., and Raubenheimer, B. (2012) "Vorticity generation by short-crested wave breaking." Geophysical Research Letters, Vol. 39, No. 24, L24604. doi: 10.1029/2012GL054034
  11. Dalrymple, R.A. (1975). "A mechanism for rip current generation on an open coast." Journal of Geophysical Research, Vol. 80, pp. 3485-3487. https://doi.org/10.1029/JC080i024p03485
  12. Dalrymple, R.A. (1978). "Rip currents and their causes." 16th International Conference of Coastal Engineering, Hamburg, Germany, pp. 1414-1427.
  13. Feddersen, F. (2014). "The generation of surfzone eddies in a strong alongshore current." Journal of Physical Oceanography, Vol. 44, pp. 600-617. https://doi.org/10.1175/JPO-D-13-051.1
  14. Johnson, D., and Pattiaratchi, C. (2006). "Boussinesq modelling of transient rip currents." Coastal Engineering, Vol. 53, pp. 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  15. Kennedy, A.B., Chen, Q., Kirby, J.T., and Dalrymple, R.A. (2000). "Boussinesq modeling of wave transformation, breaking, and runup. I: 1D." Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 126, pp. 39-47. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
  16. Korea Hydrographic and Oceanographic Agency (KHOA) (2021). Report for operation of rip current warning system in 2021.
  17. Long, J.W., and Ozkan-Haller, H.T. (2005). "Offshore controls on nearshore rip currents." Journal of Geophysical Research, Vol. 110, No. C12, C12007. doi: 10.1029/2005JC003018
  18. Long, J.W., and Ozkan-Haller, H.T. (2016). "Forcing and variability of nonstationary rip currents." Journal of Geophysical Research, Vol. 121, No. 1, pp. 520-539. doi: 10.1002/2015JC010990
  19. Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., and Rikiishi, K. (1975). "Observations of the directional spectrum of ocean waves using a cloverleaf buoy." Journal of Physical Oceanography, Vol. 5, pp. 750-760. https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  20. Peregrine, D.H. (1998). "Surf zone currents." Theoretical and Computational Fluid Dynamics, Vol. 10, pp. 295-309. https://doi.org/10.1007/s001620050065
  21. Peregrine, D.H. (1999). "Large-scale vorticity generation by breakers in shallow and deep water." European Journal of Mechanics. B, Vol. 18, pp. 403-408. https://doi.org/10.1016/S0997-7546(99)80037-5
  22. Shin, C.H., Noh, H.K., Yoon, S.B., and Choi, J. (2014). "Understanding of rip current generation mechanism at Haeundae Beach of Korea: Honeycomb waves." Journal of Coastal Research, Vol. 72, No. sp1, pp. 11-15. https://doi.org/10.2112/SI72-003.1
  23. Tang, E.C.-S., and Dalrymple, R.A. (1989). Nearshore circulation: Rip currents and wave groups. Advances in Coastal and Ocean Engineering. Plenum Press, New York, U.S., pp. 205-230.
  24. Wei, G., Kirby, J.T., Grilli, S.T., and Subramanya, R. (1995). "A fully nonlinear Boussinesq model for surface waves: Part 1: Highly nonlinear unsteady waves." Journal of Fluid Mechanics, Vol. 294, pp. 71-92. https://doi.org/10.1017/S0022112095002813
  25. Yoon, S.B., Kwon, S.J., Bae, J.S., and Choi, J. (2012). "Investigation of characteristics of rip current at Haeundae beach based on observation analysis and numerical experiments." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 4B, pp. 243-251 (in Korean).