• Title/Summary/Keyword: rim collapse

Search Result 25, Processing Time 0.028 seconds

Scenario-based Flood Disaster Simulation of the Rim Collapse of the Cheon-ji Caldera Lake, Mt. Baekdusan (시나리오에 따른 백두산 천지의 외륜산 붕괴에 의한 홍수재해 모의)

  • Lee, Khil-Ha;Kim, Sang-Hyun;Choi, Eun-Kyeong;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2014
  • Volcanic eruptions alone may lead to serious natural disasters, but the associated release of water from a caldera lake may be equally damaging. There is both historical and geological evidence of the past eruptions of Mt. Baekdusan, and the volcano, which has not erupted for over 100 years, has recently shown signs of reawakening. Action is required if we are to limit the social, political, cultural, and economic damage of any future eruption. This study aims to identify the area that would be inundated following a volcanic flood from the Cheon-Ji caldera lake that lies within Mt. Baekdusan. A scenario-based numerical analysis was performed to generate a flood hydrograph, and the parameters required were selected following a consideration of historical records from other volcanoes. The amount of water at the outer rim as a function of time was used as an upper boundary condition for the downstream routing process for a period of 10 days. Data from the USGS were used to generate a DEM with a resolution of 100 m, and remotely sensed satellite data from the moderate-resolution imaging spectroradiometer (MODIS) were used to show land cover and use. The simulation was generated using the software FLO-2D and was superposed on the remotely sensed map. The results show that the inundation area would cover about 80% of the urban area near Erdaobaihezhen assuming a 10 m/hr collapse rate, and 98% of the area would be flooded assuming a 100 m/hr collapse rate.

Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds

  • Dai, Kaoshan;Sheng, Chao;Zhao, Zhi;Yi, Zhengxiang;Camara, Alfredo;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.79-100
    • /
    • 2017
  • The use of wind energy resources is developing rapidly in recent decades. There is an increasing number of wind farms in high wind-velocity areas such as the Pacific Rim regions. Wind turbine towers are vulnerable to tropical cyclones and tower failures have been reported in an increasing number in these regions. Existing post-disaster failure case studies were mostly performed through forensic investigations and there are few numerical studies that address the collapse mode simulation of wind turbine towers under strong wind loads. In this paper, the wind-induced failure analysis of a conventional 65 m hub high 1.5-MW wind turbine was carried out by means of nonlinear response time-history analyses in a detailed finite element model of the structure. The wind loading was generated based on the wind field parameters adapted from the cyclone boundary layer flow. The analysis results indicate that this particular tower fails due to the formation of a full-section plastic hinge at locations that are consistent with those reported from field investigations, which suggests the validity of the proposed numerical analysis in the assessment of the performance of wind-farms under cyclonic winds. Furthermore, the numerical simulation allows to distinguish different failure stages before the dynamic collapse occurs in the proposed wind turbine tower, opening the door to future research on the control of these intermediate collapse phases.

Simulation of Pyroclastic Density Current by Lava Dome Collapse at Jeju Island Using TITAN2D (TITAN2D를 이용한 제주도에서 발생 가능한 용암돔 붕괴에 의한 화쇄류 수치모의)

  • Chang, Cheolwoo;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In order to determine the runout range of pyroclastic density currents on Jeju island, lava dome collapse on 8 locations of outer rim of Baekrokdam crater were simulated by TITAN2D numerical simulation program. We set parameters as internal friction angle as $30^{\circ}$ and bed friction angle as $20^{\circ}$ to control velocity of currents occurred by lava dome collapse. Then we set the height and radius of lava dome, initial speed of collapse and simulation times. And we carried out numerical simulations for a total of 96 scenarios. The result shows that the maximum runout distance was 13.4 km in case of lava dome collapse. This study can be used database for manufacturing of hazard map to minimize damages caused by pyroclastic density currents occurred on Jeju island.

Permeability Coefficient of Unsaturated Soil in Steep Slope Failure Area (붕괴가 발생한 급경사지의 현장 투수계수)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Park, Dug-Keun;Oh, Jeong-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.921-926
    • /
    • 2010
  • To examine saturation characteristics of an unsaturated soil in the steep slope area with collapse, it separated dry season from rainy season and measured water content and permeability, and measured permeability by using a tension infiltrometer in the site. In addition, it conducted electrical resistivity survey to look into thickness of ground and geological structure of underground. The collapsed slope increased depth of weathered zone compared to upper slope, and there electrical resistivity anomalous zone caused by the filtrated underground water was observed. The permeability of the collapsed area was observed high compared to upper and lower slopes of retarding basin without collapse, and the permeability measured by dividing the dry season and rainy season was measured high in case of dry season.

  • PDF

A useful method of using the healing abutments for interocclusal records in implant overdenture: a case report

  • Choi, Hyunsuk;Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.4
    • /
    • pp.341-343
    • /
    • 2022
  • To determine the vertical dimension and centric relation during the construction of implant overdentures, the record base and wax rim may need to be adjusted. The conventional method has several drawbacks, as it requires repeated tightening and loosening of the impression coping. Here, we report a useful and novel method for interocclusal records using the healing abutments in implant overdentures. Our case demonstrates that this method is easier and simpler and prevents gingival collapse.

Distribution of Pyroclastic Density Currents Determined by Numerical Model at Mt. Baekdu Volcano (백두산 화산에서 수치모형 분석에 의한 화쇄류의 영향 범위)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Kim, Sunkyeong
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.351-366
    • /
    • 2014
  • We assumed the situation where an eruption column had been formed by the explosive Plinian eruption from Mt. Baekdu and that the collapse of eruption column had caused pyroclastic density currents to occur. Based on this assumption, we simulated by using a Titan2D model. To find out about the range of the impacts of pyroclastic density currents by volcanic eruption scenarios, we studied the distance for the range of the impacts by VEIs. To compare the results by each volcanic eruption scenario, we set the location of the vent on the 8-direction flank of the outer rim and on the center of the caldera, the internal friction angle of the pyroclastic density currents as $35^{\circ}$, the bed friction angle as $16^{\circ}$. We set the pile height of column collapse and the vent diameter with various VEIs. We properly assumed the height of the column collapse, the diameter of the vent, the initial rates of the column collapse and the simulation period, based on the VEIs, gravity and the volume of the collapsed volcanic ash. According to the comparative analysis of the simulation results based on the increase of the eruption, the higher VEI by the increase of eruption products, the farther the pyroclastic density currents disperse. To the northwest from the vent on the northeast slope of the outer rim of the caldera, the impact range was 3.3 km, 4.6 km, 13.2 km, 24.0 km, 50.2 km, 83.4 km or more from VEI=2 to VEI=7, respectively. Once the database has been fully constructed, it can be used as a very important material in terms of disaster prevention and emergency management, which aim to minimize human and material damages in the vicinity of Mt. Baekdu when its eruption causes the pyroclastic density currents to occur.

Failure Mechanism of NATM tunneling using Computational Methods and Geology Investigation (수치해석수법과 지질공학적 분석을 통한 NATM터널의 붕괴메커니즘에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Choi, Hea-Jun;Jeong, Yun-Young;Jin, Guang-Ri;Rim, Hong-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.742-753
    • /
    • 2008
  • Currently an increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). Therefore, a possibility of a tunnel collapse during excavation is getting higher in a proportionate manner. This paper will analyze causes the failure mechanism of a shallow NATM tunnel for different geological conditions, ground-water and invert solutions by investigation typical collapse site during tunnel construction. In this paper, this analysis performed two phase, firstly, the field investigation considering displacement measurement, ground-water level, geological characteristic, secondly, the numerical simulation considering the exist of invert construction and the effect of ground-water. It has been found that environmental factors such as state of underground water or construction sequences could influence failure mechanism of a shallow tunnel.

  • PDF

A Study on Applying 3D Automatic Displacement Measurement System for Safety Monitoring of Building Demolition Works (건축물 해체공사 안전 모니터링을 위한 3차원 자동변위계측 시스템 활용 방안 연구)

  • Park, Han-Bin;Han, Hye-Rim;Kim, Taehoon;Cho, Kyuman;Cho, Chang-Geun;Kim, Hyeong-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.229-230
    • /
    • 2022
  • According to the national building status, there are a total of 2.89 million buildings that are over 30 years old after completion, and the number is increasing by more than 70,000 to 80,000 buildings every year. As a result, the demand for demolition works is also increasing, and more than 3 to 4 collapse accidents occur steadily every year during demolition work. Major causes of accidents include non-compliance with plans, negligence of on-site supervisors, and failure to secure structural safety. Due to the strengthening of the Severe Disaster Punishment Act, there is growing interest in the demand for secure management of collapse detection during demolition works. Therefore, this study aims to investigate the applicability of real-time safety monitoring systems using a total station capable of 3D automatic displacement measurement in building demolition work for securing structural safety by the load changes during the demolition process.

  • PDF

Residual stress in an elastoplastic annular disc interacting with an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Lai, Hsiang-Wei;Wang, Yun-Che;Aizikovich, Sergey M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2019
  • Elastoplastic analysis of an annular disc, being fully constrained on its outer rim and interacting with a purely elastic inclusion perfectly bonded with its inner rim, is conducted to study its plastic deformation and residual stress under thermal cycles. The system is termed the composite disc. Quasi-static plane-strain deformation is assumed, and the von Mises yield criterion with or without the Ludwik hardening rule is adopted in our finite element calculations. Effects of multiple material properties simultaneously being temperature dependent on the plastic behavior of the composite disc are considered. Residual stress is analyzed from a complete loading and unloading cycle. Results are discussed for various inclusion radii. It is found that when temperature dependent material properties are considered, the maximum residual stress may be greater than the maximum stress inside the disc at the temperature-loaded state due to lower temperature having larger yield stress. Temperature independent material properties overestimate stresses inside materials, as well as the elastic irreversible temperature and plastic collapse temperature.

A New Application Technique of Genetic Algorithm for Power Flow (전력조류계산을 위한 새로운 유전알고리즘 적용기법)

  • Park, Sun-Jae;Chae, Myung-Suck;Yim, Han-Suck;Shin, Joong-Rim
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.790-793
    • /
    • 1997
  • The most of conventional power flow(PF) calculations which adopt the well-known numerical methods such as Newton-Raphson method often diverge in certain critical cases like near the voltage collapse point. Some Approaches have been reported for the application of Genetic Algorithm(GA) to PF problem to overcome the disadvantages mentioned above. This paper presents a new application technique of GA for PF problem, in which some improvements and modifications are made ; modification of fitness function, improvements on crossover method, mutation law and convergence criterion, introduction of reactive power check routine. Some case studies with IEEE 5, 6, 14 bus systems are performed to show the performance of proposed algorithm.

  • PDF