DOI QR코드

DOI QR Code

Simulation of Pyroclastic Density Current by Lava Dome Collapse at Jeju Island Using TITAN2D

TITAN2D를 이용한 제주도에서 발생 가능한 용암돔 붕괴에 의한 화쇄류 수치모의

  • Chang, Cheolwoo (Department of Earth Science, Pusan National University) ;
  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University)
  • Received : 2017.03.23
  • Accepted : 2017.03.31
  • Published : 2017.03.31

Abstract

In order to determine the runout range of pyroclastic density currents on Jeju island, lava dome collapse on 8 locations of outer rim of Baekrokdam crater were simulated by TITAN2D numerical simulation program. We set parameters as internal friction angle as $30^{\circ}$ and bed friction angle as $20^{\circ}$ to control velocity of currents occurred by lava dome collapse. Then we set the height and radius of lava dome, initial speed of collapse and simulation times. And we carried out numerical simulations for a total of 96 scenarios. The result shows that the maximum runout distance was 13.4 km in case of lava dome collapse. This study can be used database for manufacturing of hazard map to minimize damages caused by pyroclastic density currents occurred on Jeju island.

본 연구에서는 제주도에서 화산분화에 의해 발생 가능한 화쇄류의 영향 범위를 파악하기 위하여 백록담 외륜산 외측 사면 8개 지점에서 새로운 용암돔이 발생하는 것을 가정하고 이 과정에서의 붕괴로 발생 가능한 화쇄류를 수치모의 하였다. 수치모의에는 TITAN2D 수치모의 프로그램을 사용하였다. TITAN2D프로그램에서 화쇄류 흐름의 속도를 제어하는 변수로 사용되는 내부마찰각과 층저마찰각 중 내부마찰각을 $30^{\circ}$, 층저마찰각을 $20^{\circ}$로 설정하였다. 붕괴되는 돔의 높이와 반경, 초기 붕괴 속도, 수치모의 시간 등을 선정하여 총 96개 시나리오에 대하여 수치모의를 실시하였다. 수치모의 결과 돔 붕괴에 의한 화쇄류는 최대 13.4 km까지 도달하여 한라산 정상부 및 제주시와 서귀포시까지 도달하는 것으로 나타났다. 본 연구를 통해 구축된 시뮬레이션 자료들을 이용하여 제주도의 화산 분화 시 발생 가능한 화쇄류의 피해범위 DB를 구축하고 이를 기반으로 재해도를 작성하여 화쇄류로 인한 피해를 최소화하는데 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Auker, M.R., Sparks, R.S.J., Lee Siebert, L., Crosweller, H.S., and Ewert, J., 2013, A statistical analysis of the global historical volcanic fatalities record. Journal of Applied Volcanology, 2:2, 1-24. doi:10.1186/2191-5040-2-2.
  2. Branney, M.J. and Kokelaar, B.P., 2002. Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London, Memoirs 27, 152p.
  3. Brenna, M., Cronin, S.J., Smith, I.E.M., Maas, R., and Sohn, Y.K., 2012a, How small-volume basaltic magmatic systems develop: a case study from the Jeju Island Volcanic Field, Korea. Journal of Petrology, 53, 985-1018. https://doi.org/10.1093/petrology/egs007
  4. Brenna, M., Cronin, S.J., Smith, I.E.M., Sohn, Y.K., and Maas, R., 2012b, Spatio-temporal evolution of a dispersed magmatic system and its implications for volcanic growth, Jeju Island Volcanic Field, Korea. Lithos, 148, 337-352. https://doi.org/10.1016/j.lithos.2012.06.021
  5. Bursik, M., Patra, A., Pitman, E.B., Nichita, C., Macias, J.L., Saucedo, R., and Girina, O., 2005, Advances in studies of dense volcanic granular flows. Reports on Progress in Physics 68(2), 271-301. https://doi.org/10.1088/0034-4885/68/2/R01
  6. Chang, C.W. and Yun, S.H., 2015, Numerical simulation using VolcFlow for pyroclastic density currents by explosive eruption of Mt. Baekdu. Journal of the Geological Society of Korea, 51, 363-375. (in Korean) https://doi.org/10.14770/jgsk.2015.51.4.363
  7. Charbonnier, S.J. and Gertisser, R., 2009, Numerical simulations of block-and-ash flows using the Titan2D flow model: examples from the 2006 eruption of Merapi Volcano, Java, Indonesia. Bulletin of Volcanology, 71, 953-959. https://doi.org/10.1007/s00445-009-0299-1
  8. Decker, R.W. and Decker, B., 1991, Mountains of fire: the nature of volcanoes. Cambridge University press. New York, 199p.
  9. Fink, J.H. and Griffiths, R.W., 1998, Morphology, eruption rates, and rheology of lava domes: Insights from laboratory models. Journal of Geophysical Research: Solid Earth, 103, 527-545. https://doi.org/10.1029/97JB02838
  10. Kelfoun, K. and Druitt, T., 2005, Numerical modeling of the Socompa rock avalanche, Chile. Journal of Geophysical Research, 110:B12202. https://doi.org/10.1029/2005JB003758
  11. Kelfoun, K., Duitt, T., van Wyk de Vries, B., and Guilbaud, M.N., 2008, Topography reflection of the Socompa debris avalanche, Chile. Bulletin of Volcanology, 70, 1169-1187. https://doi.org/10.1007/s00445-008-0201-6
  12. Kelfoun, K., Samaniego, P., Palacios, P., and Barba, D., 2009, Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well . constrained eruption at Tungurahua volcano (Ecuador). Bulletin of Volcanology, 71, 1057-1075. https://doi.org/10.1007/s00445-009-0286-6
  13. Kim, I.S. and Lee, D., 2000, Magnetostratigraphy and AMS of the Seoguipo Formation and Seoguipo Trachyte of Jeju Island, Korea. Journal of the Geological Society of Korea, 36, 163-180. (in Korean)
  14. Ko, B.K. and Yun, S.H., 2016, A Preliminary Study on Calculating Eruptive Volumes of Monogenetic Volcanoes and Volcanic Hazard Evaluation in Jeju Island. Journal of the Petrological Society of Korea, 25, 143-149. https://doi.org/10.7854/JPSK.2016.25.2.143
  15. Koh, G.W., Park, J.B., Kang, B.R., Kim, G.P., and Moon, D.C., 2013, Volcanism in Jeju Island. Journal of the Geological Society of Korea, 49, 209-230. (in Korean)
  16. Lee, J.H. and Yun, S.H., 2012, Study on the Distributional Characteristics and Classification of Quaternary Monogenetic Volcanoes in Jeju Island, Korea. Journal of the Petrological Society of Korea, 21, 385-396. (in Korean) https://doi.org/10.7854/JPSK.2012.21.4.385
  17. Lee, J.Y., Kim, J.C., Park, J.B., Lim, J.S., Hong, S.S., and Choi, H.W., 2014, Age of volcanic activity from Quaternary deposits in Sangchang-ri, Jeju island, Korea. Journal of the Geological Society of Korea, 50, 697-706. https://doi.org/10.14770/jgsk.2014.50.6.697
  18. Lee, M.W., 1982, Geology of Jeju volcanic islnad, Korea. Journal of the Rock Mineral Deposits of Japan, 77, 55-64. (in Japanese with English abstract)
  19. Lee, M.W. and Son, I.S., 1983, How Jeju Island made?-Geology and Rocks of Jeju volcanic island. Chunkwang Publication, Seoul, 135p. (in Korean)
  20. Newhall, C.G. and Self, S., 1982, The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 87, 1231-1238. https://doi.org/10.1029/JC087iC02p01231
  21. Macias, J.L., Capra, L., Arce, J.L., Espindola, J.M., Garcia-Palomo, A., and Sheridan, M.F., 2008, Hazard map of El Chichon volcano, Chiapas, Mexico: constraints posed by eruptive history and computer simulations. Journal of Volcanology and Geothermal Research, 175, 444-458. https://doi.org/10.1016/j.jvolgeores.2008.02.023
  22. Pitman, E.B., Patra, A., Bauer, A., Nichita, C., Sheridan, M.F., and Bursik, M., 2003, Computing debris flows. Physics of Fluids 15, 3638-646. https://doi.org/10.1063/1.1614253
  23. Rupp, B., Bursik, M., Namikawa, L., Webb, A., Patra, A.K., Saucedo, R., Macias, J.L., and Renschler, C., 2006, Computational modeling of the 1991 block and ash flows at Colima Volcano, Mexico. In: Siebe, C., Macias, J.L., Aguirre-Diaz, G.J. (Eds.), Neogene-Quaternary Continental Margin Volcanism: A Perspective from Mexico. Geological Society of America Special Paper 402. Penrose Conference Series, 237-252.
  24. Sheridan, M.F., Hubbard, B., Carrasco-Nunez, G., and Siebe, C., 2000, GIS model for volcanic hazard assessment: pyroclastic flows at Volcan Citlaltepetl, Mexico. 4th International Conference on Integrating GIS and Environmental Modeling (GIS/EM4): Problems, Prospects and Research Needs. Banff, Alberta, 69, 209-221.
  25. Sheridan M.F., Stinton A.J., Patra A., Pitman E.B., Bauer A., and Nichita C.C., 2005, Evaluating Titan2D massflow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. J. Volc. Geoth. Research 139: 89-102. https://doi.org/10.1016/j.jvolgeores.2004.06.011
  26. Sohn, Y.K. and Park, K.H., 2004, Early-stage volcanism and sedimentation of Jeju Island revealed by the Sagye borehole, SW Jeju Island, Korea. Geosciences Journal, 8, 73-84. https://doi.org/10.1007/BF02910280
  27. Sohn, Y.K., Park, K.H., and Yoon, S.H., 2008, Primary versus secondary and subaerial versus submarine hydrovolcanic deposits in the subsurface of Jeju Island, Korea. Sedimentology, 55, 899-924. https://doi.org/10.1111/j.1365-3091.2007.00927.x
  28. Sohn, Y.K. and Yoon, S.H., 2010, Shallow-marine records of pyroclastic surges and fallouts over water in Jeju Island, Korea, and their stratigraphic implications. Geology, 38, 763-766. https://doi.org/10.1130/G30952.1
  29. Stinton, A.J., Sheridan, M.F., Patra, A., Dalbey, K., and Namikawa, L.M., 2004, Integrating variable bed friction into Titan2D mass-flow model: application to the Little Tahoma Peak avalanches, Washington. Acta Volcanologica, 16, 153-63.
  30. TITAN2D User Guide, 2007, Release 2.0.0, 2007.07.09. Geophysical Mass Flow Group (GMFG). State University of New York at Buffalo, USA. 58p.
  31. Yun, S.H., Chang, C.W., and Kim, S.K., 2014, Distribution of Pyroclastic Density Currents Determined by Numerical Model at Mt. Baekdu Volcano. Journal of Petrological Society of Korea, 23, 351-366. (in Korean) https://doi.org/10.7854/JPSK.2014.23.4.351
  32. Yun, S.H., Lee, J.H., Kim, S.K., Chang, C.W., Cho, E., Yang, I.S., Kim, Y.J., Kim, S.H., Lee, K.H., Kim, S.W., and Macedonio, G., 2013, TITAN2D simulations of pyroclastic flows from small scale eruption at Mt. Baekdusan. Journal of Korean Earth Science Society, 34, 615-625. (in Korean) https://doi.org/10.5467/JKESS.2013.34.7.615