• 제목/요약/키워드: rigidity of stiffener

검색결과 22건 처리시간 0.017초

강곡선 플레이트거더 복부판의 중간수직보강재 소요강성에 관한 연구 (The Rigidity of Transverse Intermediate Stiffener of Horizontally Curved Plate Girder Web Panels)

  • 이두성;박찬식;이성철
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.735-742
    • /
    • 2006
  • 실 설계에서 적용되는 강곡선 플레이트거더교의 기하학적인 설계범위 내에서 횡방향변형이 충분히 지지된 강곡선 플레이트거더 복부판의 극한전단강도는 비록 직선복부판에 비해 후좌굴강도는 감소할지라도 탄성좌굴강도가 상대적으로 증가한다. 또한 강곡선 플레이트거더 복부판의 극한전단강도는 후좌굴강도를 포함한 직선플레이트거더 복부판의 극한전단강도와 같은 크기를 발현하고 있음이 여러 연구를 통해서 입증되었다. 본 연구에서는 강곡선 플레이트거더 복부판이 극한전단강도를 발현하기 위한 중간수직보강재의 소요강성에 관한 수치해석연구를 수행하였다. 수치해석결과로부터 후좌굴거동이 존재하는 강곡 선플레이트거더 복부판이 후좌굴강도를 충분히 발현하기 위해서는 현행 Guide Specifications(AASHTO, 2003)의 중간수직보강재 강성이 후좌굴거동 시에 단순지지역할을 하기에는 부족한 것으로 조사되었으며, 이를 기초로 전단좌굴강도비에 따른 소요강성식을 제안하였다.

Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending

  • Kim, Hee Soon;Park, Yong Myung;Kim, Byung Jun;Kim, Kyungsik
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.141-154
    • /
    • 2018
  • In this study, the bend-buckling strength of the web in longitudinally stiffened plate girder was numerically investigated. The buckling strength of the reinforced web was evaluated through an eigenvalue analysis of the hypothetical model, in which the top and bottom junctions of the web to the flanges were assumed as simple support conditions. Major parameters in the analysis include asymmetrical cross-sectional property, aspect ratio of the web, stiffener locations, and bending rigidity of the stiffeners. The numerical results showed that current AASHTO LRFD specifications (2014) provides the buckling strength from considerably safe side to slightly unsafe side depending on the location of the stiffeners. A modified equation for buckling coefficients was proposed to solve the shortcomings. The bending rigidity requirements of longitudinal stiffeners stipulated in AASHTO were also investigated. It is desirable to increase the rigidity of the stiffeners when the aspect ratio is less than 1.0.

Web bend-buckling strength of plate girders with two longitudinal web stiffeners

  • Kim, Byung Jun;Park, Yong Myung;Kim, Kyungsik;Choi, Byung H.
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.383-397
    • /
    • 2019
  • More than one longitudinal web stiffener may be economical in the design of plate girders that have considerably high width-to-thickness ratio of webs. In this study, the bend-buckling strength of relatively deep webs with two horizontal lines of flat plate-shaped single-sided stiffeners was numerically investigated. Linear eigenvalue buckling analyses were conducted for specially selected hypothetical models of stiffened web panels, in which top and bottom junctions of a web with flanges were assumed to have simply supported boundary conditions. Major parameters in the analyses were the locations of two longitudinal stiffeners, stress ratios in the web, slenderness ratios and aspect ratios of web panels. Based on the application of assumptions on the combined locations of the two longitudinal web stiffeners, simplified equations were proposed for the bend-buckling coefficients and compared to the case of one longitudinal stiffener. It was found that bend-buckling coefficients can be doubled by adopting two longitudinal stiffeners instead of one longitudinal stiffener. For practical design purposes, additional equations were proposed for the required bending rigidity of the longitudinal stiffeners arranged in two horizontal lines on a web.

면내 선형분포하중을 받으며 두 변이 탄성구속되고 수평보강된 직교이방성판의 탄성좌굴 (Elastic Buckling of Elastically Restrained Orthotropic Plate with a Longitudinal Stiffener under In-plane Linearly Distributed Load)

  • 권성미;정재호;채수하;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.17-20
    • /
    • 2001
  • This paper presents the results of an elastic buckling analysis of elastically restrained orthotropic plate with a longitudinal stiffener under in-plane linearly distributed load. It is assumed that the loaded edges of web plate are simply supported and other two edges are elastically restrained against rotation. The stiffener is modeled as a beam element and its torsional rigidity is neglected. For the buckling analysis Lagrangian multiplier method is employed. The effects of restraint and longitudinal stiffener are presented in a graphical form.

  • PDF

수직보강된 직교이방성 복부판의 전단탄성좌굴 (Elastic Shear Buckling of Transversely Stiffened Orthotropic Web Plates)

  • S.J. Yoon;J.H. Jung
    • Composites Research
    • /
    • 제13권5호
    • /
    • pp.37-43
    • /
    • 2000
  • 본 연구는 면내 전단력을 받으며 수직보강재가 설치된 직교이방성판의 탄성좌굴거동해석에 관한 것으로서, 판의 네 변은 단순지지 되었다고 가정하였으며, 등간격으로 배치된 보강재는 비틀림강성을 무시한 보요소로 간주하였다. 수직보강된 직교이방성판의 좌굴해석식은 Rayleigh-Ritz법을 사용하여 유도하였다. 유도된 좌굴해석식을 사용하여 수직보강된 직교이방성판의 좌굴응력의 한계값을 구해 그래프로 제시하였으며, 이 결과를 사용하여 수직보강재가 한 개 또는 두 개 설치된 판의 전단좌굴응력이 최대가 되도록 하기 위해 보강재에 요구되는 휨강성을 구하여 그래프로 제시하였다.

  • PDF

상자형 복부판의 좌굴 거동에 관한 연구 (A Study on the Buckling Behavior of the Web of Box Girders)

  • 이상우;권영봉
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.37-49
    • /
    • 1997
  • The buckling behavior of the web of steel girders are largely dependent on the size and the location of stiffeners and the restraining effect of top and bottom flanges. Elastic and inelastic buckling analyses based or the Spline Finite Strip Method were executed to study the stiffening effect of the longitudinal stiffener on the web of box girders and to find how the top and bottom flanges had effects on the web, where geometric boundary conditions were limited by both hinged, both fixed and the flange sections. The basic assumption for the longitudinal end boundary conditions was that the vertical stiffeners had the rigidity enough to force nil deflection line on the web panel so that the junction line between web and vertical stiffener was assumed to be hinged boundary conditions. The provisions on the longitudinal stiffener of the plate and box girders of the Korean Standard Highway Bridge Specifications(1995) and AASHTO Specifications(1994 LRFD) were compared with the results obtained numerically for the various longitudinal stiffener size of box girders. Simple equations and design curves for the longitudinal stiffener of the web were proposed for the practical use.

  • PDF

보강된 복합재 원형 스파의 비틀림 거동 (Torsional response of stiffened circular composite spar)

  • 김성준;이동건
    • 한국항공운항학회지
    • /
    • 제27권1호
    • /
    • pp.51-56
    • /
    • 2019
  • To reduce the structural weight, thin-walled circular composite tube has been used as a main spar of high altitude-long endurance unmanned air vehicle(HALE UAV). Predicting the torsional response of stiffened circular spar is complex due to the inhomogeneous nature of section properties, which are dependent on fiber architecture and constituent material properties. The stiffener were placed in the top and bottom sectors of a tube to increase the torsional capabilities such as the rigidity and buckling strength. Numerical simulations were performed to estimate the effect of the stiffener on the torsional capacities. A static experimental test was performed on a stiffened tube, and the test results were compared with a numerical model. The numerical models showed good correlation and demonstrated the ability to predict the torsional capacity. Results presented herein will exhibit the effectiveness of stiffener on torsional strength and stiffness.

플레이트 거더의 수평보강재 필요 강성에 관한 해석적 연구 (Numerical Study on Required Stiffness of Longitudinal Stiffener in Plate Girders)

  • 이건준;박용명;김병준;박찬희
    • 한국강구조학회 논문집
    • /
    • 제28권1호
    • /
    • pp.43-52
    • /
    • 2016
  • 본 연구에서는 판 형상의 수평보강재가 한쪽에만 설치되는 통상적인 보강 웨브에서 수평보강재의 필요 강성에 대한 해석적 연구를 수행하였다. 실제 교량용 플레이트 거더는 대부분 비대칭 단면이지만 제작성을 감안하여 수평보강재를 통상 웨브 높이의 1/5인 0.2D 부근에 설치하고 있다. 이러한 점을 감안하여 보강재가 0.16D~0.24D 범위에 설치되는 조건에 대해 단면의 비대칭성과 웨브의 형상비를 고려하여 수평보강재의 강성비(${\gamma}^*$)에 따른 고유치 해석을 수행하고 좌굴강도를 평가하였다. 이로부터 AASHTO LRFD 기준의 좌굴강도를 만족하는 수평보강재의 필요 강성을 제안하였다.

Experimental study of rigid beam-to-box column connections with types of internal/external stiffeners

  • Rezaifar, Omid;Nazari, Mohammad;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.535-544
    • /
    • 2017
  • Box sections are symmetrical sections and they have high moment of inertia in both directions, therefore they are good members in tall building structures. For the rigid connection in structures with box column continuity plates are used on level of beam flanges in column. Assembly of the continuity plates is a difficult and unreliable work due to lack of weld or high welding and cutting in the fourth side of column in panel zone, so the use of experimental stiffeners have been considered by researchers. This paper presented an experimental investigation on connection in box columns. The proposed connection has been investigated in four cases which contain connection without internal and external stiffeners(C-0-00), connection with continuity plates(C-I-CP), connection with external vase shape stiffener (C-E-VP) and connection with surrounding plates(C-E-SP). The results show that the connections with vase plates and surrounding plates can respectively increase the ultimate strength of the connection up to 366% and 518% than the connection without stiffeners, in case connection with the continuity plates this parameter increases about 39%. In addition, the proposed C-E-VP and C-E-SP connection provide a rigid and safe connection to acquire rigidity of 95% and 98% respectively. But C-I-CP connection is classified as semi-rigid connections.

Experimental and analytical behavior of stiffened angle joints

  • Wang, Peng;Pan, Jianrong;Wang, Zhan;Chen, Shizhe
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.67-78
    • /
    • 2018
  • The application of rib stiffeners is common on steel connections, with regard to the stiffened angle connection, experimental results about the influence of stiffeners under monotonic and cyclic loading are very limited. Consequently, this paper presents the experimental investigation on four types angle connections with or without stiffener under static loading and another four type stiffened angle connections subjected to cyclic loading. The static experimental result showed that the rib stiffener weld in tension zone of the connection greatly enhanced its initial rotational stiffness and flexural strength. While a stiffener was applied to the compression zone of the connection, it had not obvious influences on the initial rotational stiffness, but increased its flexural strength. The moment-rotation curves, skeleton curves, ductility, energy dissipation and rigidity were evaluated under cyclic loading. Stiffened top-and-seat angle connections behaved as semi-rigid and partial strength, and rotation of all stiffened angle connections exceeded 0.04rad. The failure modes between monotonic and cyclic loading test were completely different and indicated certain robustness.