• 제목/요약/키워드: rigid footing

검색결과 28건 처리시간 0.022초

Failure mechanism and bearing capacity of inclined skirted footings

  • Rajesh P. Shukla;Ravi S. Jakka
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.41-54
    • /
    • 2023
  • The use of a skirt, a vertical projection attached to the footing, is a recently developed method to increase the bearing capacity of soils and reduce foundation settlements. Most of the studies were focused on vertical skirted circular footings resting on clay while neglecting the rigidity and inclination of skirts. This study employs finite element limit analysis to investigate the bearing capacity enhancement of flexible and rigid inclined skirts in cohesionless soils. The results indicate that the bearing capacity initially improves with an increase in the skirt inclination but subsequently decreases for both flexible and rigid skirts. However, the rigid skirt exhibits more apparent optimum skirt inclination and bearing capacity enhancement than the flexible one, owing to differences in their failure mechanisms. Furthermore, the bearing capacity of the inclined skirted foundation increases with the skirt length, footing depth, and internal friction angle of the soil. In the case of rigid skirts, the bearing capacity increases linearly with skirt length, while for flexible skirts, it reaches a stable value at a certain skirt length. The efficiency of the flexible footing reduces as the footing depth and soil internal friction angle increase. Conversely, the efficiency of the rigid skirt decreases only with an increase in the depth of the footing. The paper also presents a detailed analysis of various failure patterns, highlighting the behaviour of inclined skirted footings. Additionally, nonlinear regression equations are provided to quantify and predict the bearing capacity enhancement with the inclined skirts.

Bearing capacity and failure mechanism of skirted footings

  • Shukla, Rajesh P.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.51-66
    • /
    • 2022
  • The article presents the results of finite element analyses carried out on skirted footings. The bearing capacity increases with the provision of the flexible and rigid skirt, but the effectiveness varies with various other factors. The skirts are more efficient in the case of cohesionless soils than cohesive and c-ϕ soils. Efficiency reduces with an increase in the soil strength and footing depth. The rigid skirt is relatively more efficient compared to the flexible skirt. In contrast, to the flexible skirt, the efficiency of the rigid skirt increases continuously with skirt length. The difference in the effectiveness of both skirts becomes more noticeable with an increase in the strength parameters, skirt length, and footing depth. The failure mechanism also changes significantly with the inclusion of a rigid skirt. The rigid skirt behaves as a solid embedded footing, and the failure mechanism becomes confined with an increase in the skirt length. Few small-scale laboratory tests were carried out to study the flexible and rigid skirt and verify the numerical study results. The numerical analysis results are further used to develop nonlinear equations to predict the enhancement in bearing capacity with the provision of the rigid and flexible skirts.

Response of rigid footing on reinforced granular fill over soft soil

  • Ramu, K.;Madhav, Madhira R.
    • Geomechanics and Engineering
    • /
    • 제2권4호
    • /
    • pp.281-302
    • /
    • 2010
  • An extended model for the response of a rigid footing on a reinforced foundation bed on super soft soil is proposed by incorporating the rough membrane element into the granular bed. The super soft soil, the granular bed and the reinforcement are modeled as non-linear Winkler springs, non-linear Pasternak layer and rough membrane respectively. The hyperbolic stress-displacement response of the super soft soil and the hyperbolic shear stress-shear strain response of the granular fill are considered. The finite deformation theory is used since large settlements are expected to develop due to deformation of the super-soft soil. Parametric studies quantify the effect of each parameter on the stress-settlement response of the reinforced foundation bed, the settlement and tension profiles.

A new way to design and construct a laminar box for studying structure-foundation-soil interaction

  • Qin, X.;Cheung, W.M.;Chouw, N.
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.521-532
    • /
    • 2019
  • This paper describes the construction of a laminar box for simulating the earthquake response of soil and structures. The confinement of soil in the transverse direction does not rely on the laminar frame but is instead achieved by two acrylic glass walls. These walls allow the behaviour of soil during an earthquake to be directly observed in future study. The laminar box was used to study the response of soil with structure-footing-soil interaction (SFSI). A single degree-of-freedom (SDOF) structure and a rigid structure, both free standing on the soil, were utilised. The total mass and footing size of the SDOF and rigid structures were the same. The results show that SFSI considering the SDOF structure can affect the soil surface movements and acceleration of the soil at different depths. The acceleration developed at the footing of the SDOF structure is also different from the surface acceleration of free-field soil.

강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석 (Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground)

  • 황희석;김동건;유남재
    • 산업기술연구
    • /
    • 제34권
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF

Ratio of predicted and observed natural frequency of finite sand stratum

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavendra Rao, M.V.;Raghunandan, M.E.
    • Geomechanics and Engineering
    • /
    • 제1권3호
    • /
    • pp.219-239
    • /
    • 2009
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios and underlain by either rigid concrete base or natural red-earth base. A comparative study of the ratio of predicted and observed natural frequency ratio of the finite sand stratum was made using the calculated values of equivalent stiffness suggested by Gazetas (1983) and Baidya and Muralikrishna (2001). Comparison of results between model footings resting on finite sand stratum underlain by the rigid concrete base and the natural red-earth base showed that, the presence of a finite base of higher rigidity increases the resonant frequency significantly. With increase in H/B ratio beyond 2.0, the influence of both the rigid concrete and natural red-earth base decreases. Increase in the contact area of the footing increases the resonant frequency of the model footings resting on finite sand stratum underlain by both the types of finite bases. Both the predicted and the observed resonant frequency ratio decreases with increase in force rating and height to width ratio for a given series of model footing.

비점착성 사면의 그물식 뿌리말뚝의 보강효과 (Reinforcing Effect of Cohesionless Slope by Reticulated Root Piles)

  • 유남재;박병수;최종상
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.7-16
    • /
    • 1998
  • This paper is an experimental study of investigating the reinforcing effect and the behavior of cohesionless slope installed with reticulated root pils. Reduced scale model tests with plane strain conditions were performed to study the behavior of the strip footing located on the surface of cohesionless slopes reinforced with root piles. Model tests were carried out with Jumunjin Standard Sand of 45% relative density prepared by raining method to have an uniform slope foundation during tests. Slope of model foundation was 1 : 1.5 and a rigid model slop. Parametric model tests were performed with changing location of model footing, arrangements of root piles and angles of pile installation. On the other hands, the technique with camera shooting was used to monitor sliding surface formed with discontinuty of dyed sand prepared during formation o foudation. From test results, parameters affecting the behavior of model footing were analyzed qualitatively to evaluate their effects on the characteristic of load - settlement, ultimate bearing capacity of model footing and failure mechanism based on the formation of failure surface.

  • PDF

현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석 (Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations)

  • 조성민
    • 한국지반공학회논문집
    • /
    • 제24권7호
    • /
    • pp.61-73
    • /
    • 2008
  • 다수의 말뚝을 캡(확대기초)으로 연결하여 하중을 지지하는 다주식 기초에 대하여 캡의 연결부를 강결합 조건과 힌지결합 조건으로 구분하여 말뚝 반력 해석의 합리성을 분석하였으며, 널리 사용 중인 탄성변위법과 라멘식 프레임 해석에 기반한 비선형 해석기법을 비교하여 검토하였다. 특히 실제 해상 장대교량의 조건을 대상으로 상부구조와 기초를 연계한 전체 구조계 해석 결과를 분석하여 말뚝머리 구속 조건에 대한 기초 부재 단면력 산정의 적정성을 파악하였다. 이를 위해 캡과 연결된 각 말뚝에서 발생하는 휨모멘트, 전단력, 압축력 등 반력을 산정하고 PM상관도 분석과 지지력 산정을 통해 말뚝 부재의 안정성을 검토하였다. 일반적인 규모의 교량, 또는 강성이 크지 않은 말뚝을 적용한 기초에서는 말뚝-캡 결합 조건에 따른 말뚝 단면 설계의 차이가 현저하지 않으나, 말뚝이 지면 위로 일정 길이 이상 돌출되는 다주식 기초의 해상교량에서는 말뚝머리를 힌지로 고려할 경우 지중부에서 매우 큰 휨모멘트와 전단력이 유발되며, 말뚝머리의 수평변위량이 극단적으로 증가하였다. 해상 장대교량에 대해서는 비현실적 가정조건에 기반한 탄성변위법 보다는 말뚝머리를 캡에 강결합하고 말뚝이 탄성판에 지지된 보로 간주하는 라멘(rahmen) 모델링을 통해 상부구조와 연계한 전체 구조계 해석을 수행하는 것이 바람직하다.

비점착성 사면에 인접한 대상기초의 지지력 (Bearing Capacity of Strip Footing Adjacent on Cohesionless Slopes)

  • 유남재;김영길;전연종
    • 한국지반공학회지:지반
    • /
    • 제13권4호
    • /
    • pp.37-54
    • /
    • 1997
  • 본 논문은 비점착성 사질토 성토 사면에 인접한 대상기초의 극한지지력 및 파괴메카니즘에 관 한 연구로서 지반의 상대밀도, 기초 폭, 사면 경사각, 사면 정부로 부터 기초까지의 거리가 기초 의 하중침하특성과 극한지지력, 경사지반의 파괴메카니즘에 미치는 영향을 조사하기 위하여 비 점착성 사질토 모형사면에서 2차원 평면변형 실험을 수행하였다. 모형실험에서는 주문진 표준사를 사용하여 상대밀도가 45%와 70%로 조성된 1:1.5및 1:2의 모형사면을 성형하고 폭이 4, 7, 10, 12cm의 대상 강성 모형기초를 사용하였다. 또한 기초의 재하위치는 사면 정부로 부터 기초까지의 거리를 기초 폭으로 나눈 값 즉, 0, 0.5, 1, 2, 3, 4, 5로 변화시키면서 실험을 수행하였다. 이와같이 사면 정부로 기초의 재하위치를 점진적으로 변화시키므로써 관찰된 활동선 형성의 파괴메카니즘을 기존의 해석 방법들과 비교 분석하였으며, 실험을 수행하여 측정한 극한지지력을 한계평형법과 극한해석법 그리고 실험결과에 의한 경험식과 비교하여 지반의 상대밀도, 기초의 폭 및 기초 재하위치의 변화가 극한지지력 및 하중친하 특성, 파괴메카니즘에 미치는 영향을 조사하였다.

  • PDF

Seismic bearing capacity of shallow footings on cement-improved soils

  • Kholdebarin, Alireza;Massumi, Ali;Davoodi, Mohammad
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.179-190
    • /
    • 2016
  • A single rigid footing constructed on sandy-clay soil was modeled and analyzed using FLAC software under static conditions and vertical ground motion using three accelerograms. Dynamic analysis was repeated by changing the elastic and plastic parameters of the soil by changing the percentage of cement grouting (2, 4 and 6 %). The load-settlement curves were plotted and their bearing capacities compared under different conditions. Vertical settlement contours and time histories of settlement were plotted and analyzed for treated and untreated soil for the different percentages of cement. The results demonstrate that adding 2, 4 and 6 % of cement under specific conditions increased the dynamic bearing capacity 2.7, 4.2 and 7.0 times, respectively.