Browse > Article
http://dx.doi.org/10.12989/gae.2022.30.1.051

Bearing capacity and failure mechanism of skirted footings  

Shukla, Rajesh P. (Department of Civil Engineering, National Institute of Technology)
Jakka, Ravi S. (Department of Earthquake Engineering, IIT Roorkee)
Publication Information
Geomechanics and Engineering / v.30, no.1, 2022 , pp. 51-66 More about this Journal
Abstract
The article presents the results of finite element analyses carried out on skirted footings. The bearing capacity increases with the provision of the flexible and rigid skirt, but the effectiveness varies with various other factors. The skirts are more efficient in the case of cohesionless soils than cohesive and c-ϕ soils. Efficiency reduces with an increase in the soil strength and footing depth. The rigid skirt is relatively more efficient compared to the flexible skirt. In contrast, to the flexible skirt, the efficiency of the rigid skirt increases continuously with skirt length. The difference in the effectiveness of both skirts becomes more noticeable with an increase in the strength parameters, skirt length, and footing depth. The failure mechanism also changes significantly with the inclusion of a rigid skirt. The rigid skirt behaves as a solid embedded footing, and the failure mechanism becomes confined with an increase in the skirt length. Few small-scale laboratory tests were carried out to study the flexible and rigid skirt and verify the numerical study results. The numerical analysis results are further used to develop nonlinear equations to predict the enhancement in bearing capacity with the provision of the rigid and flexible skirts.
Keywords
bearing capacity; failure; FEM; improvement factors; skirted foundation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Eid, H.T. (2013), "Bearing capacity and settlement of skirted shallow foundations on sand", Int. J. Geomech., 13(5), 645-652.   DOI
2 Lemaitre, J. (Ed.) (2001), Handbook of Materials Behavior Models, Three-Volume Set: Nonlinear Models and Properties.
3 Gray, D.H. and Al-Refeai, T. (1986), "Behavior of fabric vs. fiber-reinforced sand", J. Geotech. Eng. -ASCE, 112(8), 804-820. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(804).   DOI
4 Makrodimopoulos, A. and Martin, C.M. (2007), "Upper bound limit analysis using simplex strain elements and second- order cone programming", Int. J. Numer. Anal. Method. Geomech., 31(6), 835-865. https://doi.org/10.1002/nag.567.   DOI
5 Shukla, R.P. and Jakka, R.S. (2018), "Critical setback distance for a footing resting on slopes under seismic loading", Geomech. Eng., 15(6), 1193-1205. https://doi.org/10.12989/gae.2018.15.6.1193.   DOI
6 Hansen, J.B. (1970), A revised and extended formula for bearing capacity, Bulletin 28, 5-11. Copenhagen: Danish Geotechnical Institute.
7 Huang, C.C. and Tatsuoka, F. (1994), "Stability analysis for footings on reinforced sand slopes", Soils Found., 34(3), 21-37. https://doi.org/10.3208/sandf1972.34.3_21.   DOI
8 Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689.   DOI
9 Krabbenhoft, K., Lyamin, A.V. and Sloan, S.W. (2008), "Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming", Commun. Numer. Method. Eng., 24(11), 1107-1119. https://doi.org/10.1002/cnm.1018.   DOI
10 Lyamin, A.V., Salgado, R., Sloan, S.W. and Prezzi, M. (2007), "Two-and three-dimensional bearing capacity of footings in sand", Geotechnique, 57(8), 647-662. https://doi.org/10.1680/geot.2007.57.8.647.   DOI
11 Makrodimopoulos, A. and Martin, C.M. (2006), "Lower bound limit analysis of cohesive- frictional materials using second-order cone programming", Int. J. Numer. Method. Eng., 66(4), 604-634. https://doi.org/10.1002/nme.1567.   DOI
12 Mana, D.S., Gourvenec, S.M., Randolph, M.F. and Hossain, M.S. (2012), "Failure mechanisms of skirted foundations in uplift and compression", Int. J. Phys. Model. Geotech., 12(2), 47-62. https://doi.org/10.1680/ijpmg.11.00007.   DOI
13 Mana, D.S., Gourvenec, S. and Martin, C.M. (2013), "Critical skirt spacing for shallow foundations under general loading", J. Geotech. Geoenviron., 139(9), 1554-1566. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000882.   DOI
14 Mana, D.S., Gourvenec, S. and Randolph, M.F. (2014), "Numerical modelling of seepage beneath skirted foundations subjected to vertical uplift", Geotech., 55, 150-157. doi.org/10.1016/j.compgeo.2013.08.007   DOI
15 Meyerhof, G.G. (1965), "Shallow foundations", J. Soil Mech. Found. Eng. ASCE, 91(2), 21-31.   DOI
16 Nazir, A.K. and Azzam, W.R. (2010), "Improving the bearing capacity of footing on soft clay with sand pile with/without skirt", Alexandria Eng. J., 49, 371-377. https://doi.org/10.1016/j.aej.2010.06.002.   DOI
17 Al-Aghbari, M.Y. and Mohamedzein, Y.E. (2004), "Bearing capacity of strip foundations with structural skirt", Geotech. Geol. Eng., 22(1), 43-57. https://doi.org/10.1023/B:GEGE.0000013997.79473.e0.   DOI
18 Michalowski, R.L. (1997), "An estimate of the influence of soil weight on bearing capacity using limit analysis", Soils Found., 37(4), 57-64. https://doi.org/10.3208/sandf.37.4_57.   DOI
19 Michalowski, R.L. (2001), "Upper-bound load estimates on square and rectangular footings", Geotechnique, 51(9), 787-798. https://doi.org/10.1680/geot.2001.51.9.787.   DOI
20 Optum G2. Computational Engineering, Copenhagen, Denmark.
21 Park, J.S., Park, D. and Yoo, J.K. (2016), "Bearing capacity of bucket foundations in sand", Ocean Eng., 121, 453-461. https://doi.org/10.1016/j.oceaneng.2016.05.056.   DOI
22 Pula, W. and Chwala, M. (2018), "Random bearing capacity evaluation of shallow foundations for asymmetrical failure mechanisms with spatial averaging and inclusion of soil self-weight", Comput. Geotech., 101, 176-195. 10.1016/j.compgeo.2018.05.002   DOI
23 Randolph, M.F. and Watson, P.G. (1999), "Bearing response of skirted foundation on nonhomogeneous soil", J. Geotech. Geoenviron. Eng., 24-934. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924).   DOI
24 Yan, Z., Liu, R. L., Lv, P. and Zhang, H.Q. (2020), "Model tests on jacking installation and lateral loading performance of a new skirted foundation in sand", Ocean Eng., 197, 106914. https://doi.org/10.1016/j.oceaneng.2019.106914.   DOI
25 Selmi, M., Kormi, T., Hentati, A. and Ali, N.B.H. (2019), "Capacity assessment of offshore skirted foundations under HM combined loading using RFEM", Comput. Geotech., 114, 103148. https://doi.org/10.1016/j.compgeo.2019.103148.   DOI
26 Stergiou, T., Terzis, D. and Georgiadis, K. (2015), "Undrained bearing capacity of tripod skirted foundations under eccentric loading", Geotechnik, 38(1), 17-27. https://doi.org/10.1002/gete.201400029.   DOI
27 Terzaghi, K. (1943), Theoretical soil mechanics, Wiley, New York.
28 Ziccarelli, M., Valore, C., Muscolino, S.R. and Fioravante, V. (2017), "Centrifuge tests on strip footings on sand with a weak layer", Geotech. Res., 4(1), 47-64. https://doi.org/10.1680/jgere.16.00021.   DOI
29 Soubra, A. H. (1999), "Upper-bound solutions for bearing capacity of foundations", J. Geotech. Geoenviron. Eng., 125(1), 59-68. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:1(59).   DOI
30 Bransby, M.F. and Randolph, M.F. (1999), "The effect of skirted foundation shape on response to combined V-M-H Loadings", Int. J. Offshore Polar Eng., 9(3), 214-218.
31 Krabbenhoft, K., Lyamin, A.V. and Sloan, S.W. (2007), "Formulation and solution of some plasticity problems as conic programs", Int. J. Solids Struct., 44(5), 1533-1549. https://doi.org/10.1680/geot.2007.57.8.647.   DOI
32 l-Aghbari, M.Y. and Mohamedzein, Y.A. (2006), "Improving the performance of circular foundations using structural skirts", Proceedings of the Institution of Civil Engineers-Ground Improvement, 10(3), 125-132. https://doi.org/10.1680/grim.2006.10.3.125.   DOI
33 Al-Aghbari, M.Y. and Dutta, R.K. (2008), "Performance of square footing with structural skirt resting on sand", Geomech. Geoeng., 3(4), 271-277. https://doi.org/10.1080/17486020802509393.   DOI
34 Chwala, M. and Pula, W. (2020), "Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parameters", PloS one, 15(4), e0231992. https://doi.org/10.1371/journal.pone.0231992.   DOI
35 Fenton, G.A. and Griffiths, D.V. (2003), "Bearing-capacity prediction of spatially random c φ soils", Can. Geotech. J., 40(1), 54-65.   DOI
36 Hu, Y., Randolph, M.F. and Watson, P.G. (1999), "Bearing response of skirted foundation on nonhomogeneous soil", J. Geotech. Geoenviron. Eng., 125(11), 924-935. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924).   DOI
37 Saleh, N.M., Alsaied, A.E. and Elleboudy, A.M. (2008), "Behavior of skirted strip footing under eccentric load", Proceedings of the 17th Int. Conf. on Soil Mech. and Geotechnical Eng., 586-589.
38 Shukla, R.P. (2019), Bearing Capacity of Skirted Footing on Slopes. Ph.D. Dissertation. Indian Institute of Technology Roorkee, Roorkee, India.
39 Shukla, R.P. (2022), "Bearing capacity of skirted footing subjected to inclined loading", Mag. Civil Eng., 110(2), 1-11, https://doi.org/10.34910/MCE.110.12.   DOI
40 Sajjad, G. and Masoud, M. (2018), "Study of the behaviour of skirted shallow foundations resting on sand", Int. J. Phys. Model. Geotech., 18(3), 117-130. https://doi.org/10.1680/jphmg.16.00079.   DOI
41 Shukla, S.K. (2017). Fundamentals of Fibre-Reinforced Soil Engineering, Springer Nature Singapore Pld.
42 Swiss Standard SN 670 010b (2007), Characteristic coefficients of soils, Association of Swiss Road and Traffic Engineers Minnesota Dept. of Transportation, Pavement Design.
43 Tani, K. and Craig, W.H. (1995), "Bearing capacity of circular foundations on soft clay of strength increasing with depth", Soils Found., 35(4), 21-35. https://doi.org/10.3208/sandf.35.4_21.   DOI
44 Valore, C., Ziccarelli, M. and Muscolino, S.R. (2017), "The bearing capacity of footings on sand with a weak layer", Geotech. Res., 4(1), 12-29. https://doi.org/10.1680/jgere.16.00020.   DOI
45 Wakil, A.Z.E. (2013), "Bearing capacity of skirt circular footing on sand", Alexandria Eng. J., 52, 359-364. https://doi.org/10.1016/j.aej.2013.01.007.   DOI
46 Vulpe, C. (2015), "Design method for the undrained capacity of skirted circular foundations under combined loading: effect of deformable soil plug", Geotechnique, 65(8), 669-683. https://doi.org/10.1680/geot.14. P.200.   DOI
47 Vesic, A.S. (1973), "Analysis of ultimate loads of shallow foundations", J. Soil Mech. Found. Division, 99(1), 45-73. https://doi.org/10.1061/JSFEAQ.0001846.   DOI
48 Wang, Y.J., Yin, J.H. and Chen, Z.Y. (2001), "Calculation of bearing capacity of a strip footing using an upper bound method", Int. J. Numer. Anal. Method. Geomech., 25(8), 841-851. https://doi.org/10.1002/nag.151.   DOI
49 Yun, G. and Bransby, M.F. (2007b), "The undrained vertical bearing capacity of skirted foundations", Soils Found., 47(3), 493-506. https://doi.org/10.3208/sandf.47.493.   DOI
50 Zhang, P. and Ding, H. (2011), "Bearing capacity of the bucket spudcan foundation for offshore jack-up drilling platforms", Petroleum Exploration and Development, 38(2), 237-242. https://doi.org/10.1016/S1876-3804(11)60029-3.   DOI
51 Acosta-Martinez, H.E., Gourvenec, S.M. and Randolph, M.F. (2008), "An experimental investigation of a shallow skirted foundation under compression and tension", Soils Found., 48(2), 247-254. https://doi.org/10.3208/sandf.48.247.   DOI
52 Al-Aghbari, M.Y. and Mohamedzein, Y.A. (2004), "Model testing of strip footings with structural skirts", Proceedings of the Institution of Civil Eng.-Ground Improvement, 8(4), 171-177. https://doi.org/10.1680/grim.8.4.171.41844.   DOI
53 Chen, W. and Randolph, M.F. (2007), "External radial stress changes and axial capacity for suction caissons in soft clay", Geotechnique, 57(6), 499-511. https://doi.org/10.1680/geot.2007.57.6.499.   DOI
54 Al-Aghbari, M.Y. and Mohamedzein, Y.E.A. (2018), "The use of skirts to improve the performance of a footing in sand", Int. J. Geotech. Eng., 1-8. https://doi.org/10.1080/19386362.2018.1429702.   DOI
55 Bienen, B., Gaudin, C., Cassidy, M.J., Rausch, L., Purwana, O.A., and Krisdani, H. (2012), "Numerical modelling of a hybrid skirted foundation under combined loading", Comput. Geotech., 45, 127-139. https://doi.org/10.1016/j.compgeo.2012.05.009.   DOI
56 Bransby, M.F. and Yun, G.J. (2009), "The undrained capacity of skirted strip foundations under combined loading", Geotechnique, 59(2), 115-125. https://doi.org/10.1680/geot.2007.00098.   DOI
57 Chwala, M. (2021), "Upper-bound approach based on failure mechanisms in slope stability analysis of spatially variable c-φ soils", Comput. Geotechnics, 135, 104170. https://doi.org/10.1016/j.compgeo.2021.104170.   DOI
58 Drescher, A. and Detournay, E. (1993), "Limit load in translational failure mechanisms for associative and non-associative materials", Geotechnique, 43(3), 443-456.   DOI