• Title/Summary/Keyword: rigid footing

Search Result 28, Processing Time 0.029 seconds

Failure mechanism and bearing capacity of inclined skirted footings

  • Rajesh P. Shukla;Ravi S. Jakka
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.41-54
    • /
    • 2023
  • The use of a skirt, a vertical projection attached to the footing, is a recently developed method to increase the bearing capacity of soils and reduce foundation settlements. Most of the studies were focused on vertical skirted circular footings resting on clay while neglecting the rigidity and inclination of skirts. This study employs finite element limit analysis to investigate the bearing capacity enhancement of flexible and rigid inclined skirts in cohesionless soils. The results indicate that the bearing capacity initially improves with an increase in the skirt inclination but subsequently decreases for both flexible and rigid skirts. However, the rigid skirt exhibits more apparent optimum skirt inclination and bearing capacity enhancement than the flexible one, owing to differences in their failure mechanisms. Furthermore, the bearing capacity of the inclined skirted foundation increases with the skirt length, footing depth, and internal friction angle of the soil. In the case of rigid skirts, the bearing capacity increases linearly with skirt length, while for flexible skirts, it reaches a stable value at a certain skirt length. The efficiency of the flexible footing reduces as the footing depth and soil internal friction angle increase. Conversely, the efficiency of the rigid skirt decreases only with an increase in the depth of the footing. The paper also presents a detailed analysis of various failure patterns, highlighting the behaviour of inclined skirted footings. Additionally, nonlinear regression equations are provided to quantify and predict the bearing capacity enhancement with the inclined skirts.

Bearing capacity and failure mechanism of skirted footings

  • Shukla, Rajesh P.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • The article presents the results of finite element analyses carried out on skirted footings. The bearing capacity increases with the provision of the flexible and rigid skirt, but the effectiveness varies with various other factors. The skirts are more efficient in the case of cohesionless soils than cohesive and c-ϕ soils. Efficiency reduces with an increase in the soil strength and footing depth. The rigid skirt is relatively more efficient compared to the flexible skirt. In contrast, to the flexible skirt, the efficiency of the rigid skirt increases continuously with skirt length. The difference in the effectiveness of both skirts becomes more noticeable with an increase in the strength parameters, skirt length, and footing depth. The failure mechanism also changes significantly with the inclusion of a rigid skirt. The rigid skirt behaves as a solid embedded footing, and the failure mechanism becomes confined with an increase in the skirt length. Few small-scale laboratory tests were carried out to study the flexible and rigid skirt and verify the numerical study results. The numerical analysis results are further used to develop nonlinear equations to predict the enhancement in bearing capacity with the provision of the rigid and flexible skirts.

Response of rigid footing on reinforced granular fill over soft soil

  • Ramu, K.;Madhav, Madhira R.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.281-302
    • /
    • 2010
  • An extended model for the response of a rigid footing on a reinforced foundation bed on super soft soil is proposed by incorporating the rough membrane element into the granular bed. The super soft soil, the granular bed and the reinforcement are modeled as non-linear Winkler springs, non-linear Pasternak layer and rough membrane respectively. The hyperbolic stress-displacement response of the super soft soil and the hyperbolic shear stress-shear strain response of the granular fill are considered. The finite deformation theory is used since large settlements are expected to develop due to deformation of the super-soft soil. Parametric studies quantify the effect of each parameter on the stress-settlement response of the reinforced foundation bed, the settlement and tension profiles.

A new way to design and construct a laminar box for studying structure-foundation-soil interaction

  • Qin, X.;Cheung, W.M.;Chouw, N.
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.521-532
    • /
    • 2019
  • This paper describes the construction of a laminar box for simulating the earthquake response of soil and structures. The confinement of soil in the transverse direction does not rely on the laminar frame but is instead achieved by two acrylic glass walls. These walls allow the behaviour of soil during an earthquake to be directly observed in future study. The laminar box was used to study the response of soil with structure-footing-soil interaction (SFSI). A single degree-of-freedom (SDOF) structure and a rigid structure, both free standing on the soil, were utilised. The total mass and footing size of the SDOF and rigid structures were the same. The results show that SFSI considering the SDOF structure can affect the soil surface movements and acceleration of the soil at different depths. The acceleration developed at the footing of the SDOF structure is also different from the surface acceleration of free-field soil.

Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground (강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석)

  • Hwang, Hui-Seok;Kim, Dong-Geon;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF

Ratio of predicted and observed natural frequency of finite sand stratum

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavendra Rao, M.V.;Raghunandan, M.E.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.219-239
    • /
    • 2009
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios and underlain by either rigid concrete base or natural red-earth base. A comparative study of the ratio of predicted and observed natural frequency ratio of the finite sand stratum was made using the calculated values of equivalent stiffness suggested by Gazetas (1983) and Baidya and Muralikrishna (2001). Comparison of results between model footings resting on finite sand stratum underlain by the rigid concrete base and the natural red-earth base showed that, the presence of a finite base of higher rigidity increases the resonant frequency significantly. With increase in H/B ratio beyond 2.0, the influence of both the rigid concrete and natural red-earth base decreases. Increase in the contact area of the footing increases the resonant frequency of the model footings resting on finite sand stratum underlain by both the types of finite bases. Both the predicted and the observed resonant frequency ratio decreases with increase in force rating and height to width ratio for a given series of model footing.

Reinforcing Effect of Cohesionless Slope by Reticulated Root Piles (비점착성 사면의 그물식 뿌리말뚝의 보강효과)

  • Yoo, Nam-Jea;Park, Byung-Soo;Choi, Jong-Sang
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.7-16
    • /
    • 1998
  • This paper is an experimental study of investigating the reinforcing effect and the behavior of cohesionless slope installed with reticulated root pils. Reduced scale model tests with plane strain conditions were performed to study the behavior of the strip footing located on the surface of cohesionless slopes reinforced with root piles. Model tests were carried out with Jumunjin Standard Sand of 45% relative density prepared by raining method to have an uniform slope foundation during tests. Slope of model foundation was 1 : 1.5 and a rigid model slop. Parametric model tests were performed with changing location of model footing, arrangements of root piles and angles of pile installation. On the other hands, the technique with camera shooting was used to monitor sliding surface formed with discontinuty of dyed sand prepared during formation o foudation. From test results, parameters affecting the behavior of model footing were analyzed qualitatively to evaluate their effects on the characteristic of load - settlement, ultimate bearing capacity of model footing and failure mechanism based on the formation of failure surface.

  • PDF

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

Bearing Capacity of Strip Footing Adjacent on Cohesionless Slopes (비점착성 사면에 인접한 대상기초의 지지력)

  • Yu, Nam-Jae;Kim, Yeong-Gil;Jeon, Yeon-Jong
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.37-54
    • /
    • 1997
  • This paper is to investigate the bearing capacity and the failure mechanism of slope subjected to strip surcharges adjassent to embankment slope of sandy soil. Parametric model tests under plain strain condition were performed by changing width of footing, relative density of slope materials, and position of footing from the crest of slopes. For model tests, Jumunjin standard sand was used as the slope material and its relative density was 45% and 70%, respectively. The angle of slope was formed with 1 : 1.5 and 1 2. Rigid model footings, made of aluminuu were used with their widths of 4, 7, 10 and 12cm. For the position of model footing, position ratios, distance of model footing from the crest of slope divided by footing width, were 0, 0.5, 1, 2, 3, 4, 5. Failure mechanism was observed by using ink colored sands and markers inserted in model slopes. Ultimate bearing capacity obtained from tests was analyzed and compared with limit equilibrium method, limit analysis method and empirical equation. Characteristics of load-settlement curves and failure mechanism were also analyzed and compared with the existing theories. Thus, their effects on ultimate bearing capacity of model footing adjacent to slope were assessed.

  • PDF

Seismic bearing capacity of shallow footings on cement-improved soils

  • Kholdebarin, Alireza;Massumi, Ali;Davoodi, Mohammad
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.179-190
    • /
    • 2016
  • A single rigid footing constructed on sandy-clay soil was modeled and analyzed using FLAC software under static conditions and vertical ground motion using three accelerograms. Dynamic analysis was repeated by changing the elastic and plastic parameters of the soil by changing the percentage of cement grouting (2, 4 and 6 %). The load-settlement curves were plotted and their bearing capacities compared under different conditions. Vertical settlement contours and time histories of settlement were plotted and analyzed for treated and untreated soil for the different percentages of cement. The results demonstrate that adding 2, 4 and 6 % of cement under specific conditions increased the dynamic bearing capacity 2.7, 4.2 and 7.0 times, respectively.