• Title/Summary/Keyword: rigid body analysis

Search Result 469, Processing Time 0.022 seconds

Static and Dynamic Behavior at Low-Frequency Range of Floating Slab Track Discretely Supported by Rubber Mounts in Real-Scale Laboratory Test (고무 마운트로 이산 지지되는 플로팅 슬래브 궤도의 실모형 실내 실험에서의 정적 및 저주파 대역 동적 거동)

  • Hwang, Sung Ho;Jang, Seung Yup;Kim, Eun;Park, Jin Chul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.485-497
    • /
    • 2012
  • Recently, with increasing social interests on noise and vibration induced by railway traffic, the application of floating slab track that can efficiently reduce the railway vibration is increasing. In this study, to more accurately understand the dynamic behavior of the floating slab track, a laboratory mock-up test has been performed, and the static and dynamic behaviors at frequency range near the system resonance frequency were explored. Based on the test results, the design of the floating slab track and the structural analysis model used in the design have been verified. The analytic and test results demonstrate that the dominant frequency of the floating slab track occurs at the frequencies between vertical rigid body mode natural frequency and bending mode natural frequency, and the dominant deformation mode is close to the bending mode. This suggests that in the design of the floating slab track, the bending rigidity of the slab and the boundary conditions at slab joints and slab ends should be taken into consideration. Also, the analytic results by the two-dimensional finite element analysis model using Kelvin-Voigt model, such as static and dynamic deflections and force transmissibility, are found in good agreement with the test results, and thus the model used in this study has shown the reliability suitable to be utilized in the design of the floating slab track.

A Biomechanical Analysis of an Interspinous Distraction Device for Treatment of Lumbar Spinal Stenosis (요추부 협착증 치료를 위한 극돌기 삽입술의 생체역학적 효과 분석)

  • Lee Hui-Sung;Chen Wen Ming;Song Dong-Ryul;Kwon Soon-Young;Lee Kwon-Yong;Lee Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.210-217
    • /
    • 2006
  • Many types of interspinous distraction devices (IDDs) have been recently developed as an alternative surgical treatment to laminectomy and fusion with pedicle screws for the treatment of the lumbar spinal stenosis (LSS). They are intended to keep the lumbar spine in a slightly flexed posture to relieve pain caused by narrowing of the spinal canal and vertebral foramen. However, their biomechanical efficacies are not well known. In this study, we evaluated the kinematic behaviors and changes in intradiscal pressure (IDP) of the porcine lumbar spine implanted with IDD. For kinematics analysis, five porcine lumbar spines (L2-L6) were used and the IDD was inserted at L4-L5. Three markers (${\phi}{\le}0.8mm$) were attached on each vertebra to define a rigid body motion for stereophotogrammetric assessment of the spinal motion in 3-D. A moment of 7.5Nm in flexion-extension, lateral bending, and axial rotation were imparted with a compressive force of 700N. Then, IDD was implanted at L3-L4. IDPs were measured using pressure transducer under compression (700N) and additional extension moment (700N+7.5Nm). In kinematic behaviors, insertion of IDD resulted in statistically significant decrease 42.8% at the implanted level in extension. There were considerable changes in ROM at the adjacent levels, but statistically insignificant. In other motions, there were no significant changes in ROM as well regardless of levels. IDPs at the surgical level (L3-L4) under compression and extension moment decreased by 12.9% and 18.8% respectively after surgery (p<0.05). At the superiorly adjacent levels, IDPs increased by 19.4% and 12.9% under compression and extension, respectively (p<0.05). Corresponding changes at the inferiorly adjacent levels were 29.4% and 6.9%, but they were statistically insignificant (p>0.05). The magnitude of pressure changes due to IDD, both at the operated and adjacent levels, were far less than the previously reported values with conventional fusion techniques. Our experimental results demonstrated the IDDs can be very effective in limiting the extension motion that may cause narrowing of the spinal canal and vertebral foramens while maintaining kinematic behaviors and disc pressures at the adjacent levels.

Improvement of Seismic Performance Evaluation Method for Concrete Dam Piers by Applying Collapse-Level Earthquake(CLE) (붕괴방지수준(CLE)을 적용한 콘크리트 댐 피어부 내진성능평가 방안 개선)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Min-Ho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • The purpose of this paper is to suggest a method for applying a reasonable dam axial seismic load loading method and load-bearing capacity evaluation method in the dynamic analysis of the pier part of a concrete dam to which the seismic force of the collapse prevention level is applied. To this end, the pier part of a concrete dam was selected as a target facility, and the characteristics of the dynamic behavior in the axial direction of the weir dam were analyzed through dynamic analysis applying various weir widths, and 'U.S. The load-bearing capacity evaluation was performed by applying the RC hydraulic structure evaluation technique suggested by the Army Corps, 2007'. As a result of the study, when applying seismic force in the axial direction of the pier part, it is more realistic to assume that the axial direction of the weir part dam behaves as a rigid body and 'U.S. Army Corps, 2007' suggested that the method of reviewing the load-bearing capacity for moment and shear was considered reasonable, so it was concluded that improvement of the current evaluation method was necessary. If the improvement of the research result is applied, it will have the effect of deriving more reasonable evaluation results than the current seismic performance evaluation method using CLE. It is judged that additional research is needed in the future on the torsional moment occurring in the pier part.

Ultimate Stress of Unbonded Tendons in Post-Tensioned Flexural Members (포스트텐션 휨부재에서 비부착긴장재의 극한응력)

  • Lee, Deuck-Hang;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.489-499
    • /
    • 2009
  • It is quite difficult to predict the flexural strength of post-tensioned members with unbonded tendons (unbonded posttensioned members, UPT members) because of debonding behavior between concrete and prestressing tendons, which is different from that with bonded tendons. Despite many previous researches, our understanding on the flexural strength of UPT members is still insufficient, and thus, national codes use different methods to calculate the strength, which quite often give very different results. Therefore, this paper reviews various existing methods, and aims at proposing an improved rational strength model for UPT flexural members having better accuracy. Additionally, a database containing a large number of test data on UPT flexural members has been established and used for verification of the proposed flexural strength model. The analysis results show that the proposed method provides much better accuracy than many existing methods including the rigid-body model that utilizes the assumption of concentrated deformation and plastic hinge length, and that it also gives proper consideration on the effects of primary parameters such as reinforcement ratio, loading pattern, concrete strength, etc. Especially, the proposed method also well predicts the ultimate stress of unbonded tendons of over-reinforced members, which are often possible in construction fields, and high strength concrete members.

Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine (부유식 해상 풍력 발전기의 Tower Top 및 Rotor Shaft에 작용하는 동적 하중 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.455-463
    • /
    • 2012
  • In this study, we calculate dynamic constrained force of tower top and blade root of a floating offshore wind turbine. The floating offshore wind turbine is multibody system which consists of a floating platform, a tower, a nacelle, and a hub and three blades. All of these parts are regarded as a rigid body with six degree-of-freedom(DOF). The platform and the tower are connected with fixed joint, and the tower, the nacelle, and the hub are successively connected with revolute joint. The hub and three blades are connected with fixed joint. The recursive formulation is adopted for constructing the equations of motion for the floating wind turbine. The non-linear hydrostatic force, the linear hydrodynamic force, the aerodynamic force, the mooring force, and gravitational forces are considered as external forces. The dynamic load at the tower top, rotor shaft, and blade root of the floating wind turbine are simulated in time domain by solving the equations of motion numerically. From the simulation results, the mutual effects of the dynamic response between the each part of the floating wind turbine are discussed and can be used as input data for the structural analysis of the floating offshore wind turbine.

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

A comparative study on the accuracy of impression body according to the types of impression tray (임플란트 인상 채득 시 트레이 종류에 따른 인상체의 정확도에 관한 비교 연구)

  • Yi, Hyun-Jung;Lim, Jong-Hwa;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.48-54
    • /
    • 2010
  • Purpose: The objective of this study was to evaluate and compare the accuracy of impression body taking by the closed and the open tray impression technique with 3 types of impression tray. Individual tray, metal stock tray and polycarbonate tray were used. Materials and methods: Nine closed tray impressions were taken by individual tray, metal stock tray and polycarbonate stock tray, respectively with polyether impression material. 9 open tray impressions were also acquired by same manner. Precision analysis on the master models was performed by attaching the reference frameworks with alternate single screws and measuring the vertical fit discrepancy of respective analogues in working cast with a stereo microscope. Data were analyzed by 1 way ANOVA and independent t-test. Results: The average fit accuracy of impression bodies was calculated. With the closed tray impression technique, there were significant statistical differences in vertical fit discrepancy according to the types of tray. The individual tray group showed the lowest value and the polycarbonate stock tray group represented the highest. With the open tray impression technique, there was no significant difference in vertical fit discrepancy. Significant statistical difference in vertical fit discrepancy was found between the open and the closed impression technique with the polycarbonate stock tray. Conclusion: From the results above, more precise impressions could be acquired by the rigid individual tray compared with the polycarbonate stock tray. It was hard to get consistent accuracy impressions by the closed tray impression technique with polycarbonate stock trays.

Analysis of the Effect of Corner Points and Image Resolution in a Mechanical Test Combining Digital Image Processing and Mesh-free Method (디지털 이미지 처리와 강형식 기반의 무요소법을 융합한 시험법의 모서리 점과 이미지 해상도의 영향 분석)

  • Junwon Park;Yeon-Suk Jeong;Young-Cheol Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • In this paper, we present a DIP-MLS testing method that combines digital image processing with a rigid body-based MLS differencing approach to measure mechanical variables and analyze the impact of target location and image resolution. This method assesses the displacement of the target attached to the sample through digital image processing and allocates this displacement to the node displacement of the MLS differencing method, which solely employs nodes to calculate mechanical variables such as stress and strain of the studied object. We propose an effective method to measure the displacement of the target's center of gravity using digital image processing. The calculation of mechanical variables through the MLS differencing method, incorporating image-based target displacement, facilitates easy computation of mechanical variables at arbitrary positions without constraints from meshes or grids. This is achieved by acquiring the accurate displacement history of the test specimen and utilizing the displacement of tracking points with low rigidity. The developed testing method was validated by comparing the measurement results of the sensor with those of the DIP-MLS testing method in a three-point bending test of a rubber beam. Additionally, numerical analysis results simulated only by the MLS differencing method were compared, confirming that the developed method accurately reproduces the actual test and shows good agreement with numerical analysis results before significant deformation. Furthermore, we analyzed the effects of boundary points by applying 46 tracking points, including corner points, to the DIP-MLS testing method. This was compared with using only the internal points of the target, determining the optimal image resolution for this testing method. Through this, we demonstrated that the developed method efficiently addresses the limitations of direct experiments or existing mesh-based simulations. It also suggests that digitalization of the experimental-simulation process is achievable to a considerable extent.