• Title/Summary/Keyword: right-turn signal

Search Result 29, Processing Time 0.02 seconds

Right-Turn Vehicle Supplementary Signal Improvement at Intersections (교차로 우회전 차량 보조등 개선)

  • LEE, Nam Soo;KIM, Yu Chan;LIM, Joon Beom;KIM, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.441-448
    • /
    • 2015
  • This study aims to suggest a reasonable signal operation method for right-turn traffic management. It was found that the right-turn vehicle supplementary signal is currently operated without clear regulations or criteria. It was also analyzed that right-turn supplementary signals are used without consistency, there is a risk of traffic accidents due to the discordance between supplementary signals and traffic signals of forward vehicles, there is a lack of basis for prohibition of a right turn when right-turn vehicle's supplementary signal is red and the flashing red signal is used in a different sense from the law. In order to see the effect of the installed right-turn vehicle supplementary signals on traffic signal violation, a field investigation was conducted. As the result, there was a high proportion of signal violation on the approach lane with right-turn supplementary signals and this means that right-turn supplementary signals hardly influenced the reduction in proportion of signal violation during a right turn. Additionally, a survey was carried out to see if there were differences in driver's interpretation of traffic signals depending on the installation of right-turn supplementary signals. As the result of the survey, there were no differences in interpretation of traffic signals depending on the installation of right-turn supplementary signals or the types of right-turn supplementary signals. A right turn when the signal was red did not lead to serious traffic accidents, so it is thought that there should be a careful consideration of a total ban on a right turn when the signal is red, in order to prevent driver's confusion due to the change of the signal system. Unless there is a disturbance to cars and pedestrians after a temporary stop when the signal is red, there is a need to specify that vehicles must stop temporarily in the Road Traffic Act to facilitate a right turn. What this study finally suggested is to use tri-colored arrow signals for right-turn car supplementary signals to convey a signal to a driver clearly.

Right-Turn Traffic Operation at Signalized Intersections (신호교차로에서 우회전교통류 운영방안)

  • KIM, Youngchan;KWON, Minyoung
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.79-89
    • /
    • 2017
  • The purpose of this study is to analyze the current right-turn operation at signalized intersections and suggest appropriate right-turn operation strategy. From field investigation, right-turn signals have not only operated various type and shape, lacking of consistency, but also there was no clear regulations or standards. It could increase drivers' confusion and cause vehicle-to-pedestrian accidents. In order to improve pedestrian safety, there is urgent need to study the regulations and standards regarding to right-turn traffic control. This study suggests appropriate right-turn signal operation strategy. In case of permissive right-turn operation, it should be stated on regulations that red light means right-turn vehicles must stop temporarily at the stop line and then turn right. Necessary conditions for installing right-turn signal for protected operation are that there should have one or more exclusive right-turn lanes and right-turn signal face should contain the lenses with three-color arrow indication. In addition, we assort right-turn operation types as permissive, protected and protected/permissive right-turn and suggest specific signal operation strategy by the types.

The Technique of Estimating the Right-Turn Adjustment Factor (우회전 보정계수 산정기법)

  • Kim, Gyeong-Hwan;Kim, Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.73-84
    • /
    • 2001
  • Korean Highway Capacity Manual applies 7 adjustment factors to estimate saturation flows at signalized intersections. Among the adjustment factors, the right-turn adjustment factor uses equation hard to understand and requires complicated computing process comparing other adjustment factors. Thus. this study was conducted in order to suggest a new technique of estimating the right-turn adjustment factor which is easy to understand and simple to computer by having reasonable degree of accuracy. In this study the right-turn saturation flow ratios which are important in estimating the factor are suggested and the equation to estimate the volume of right-turn on red signal(RTOR) is developed based on observed data. The right-turn saturation flow rates can be estimated according to turning radius and number of lanes of crossing road dividing right-turn lanes into canalized and uncanalized lanes. The RTOR volume is estimated using the proportion of the time during which RTOR is possible to the whole time of red signal according to the through traffic volume per lane of the approach at signalized intersections. The technique of estimating the right-turn adjustment factor suggested in this study, which follows the HCM2000 of U.S. in principal, first judges the right-turn lane to be used exclusively for right-turn or not by employing the RTOR factor and the judging equation developed in this study. Next, if the right-turn lane is not exclusive right-turn lane, the shared right-turn lane is classified into single lane approach or multi lane approach. Thus, a total of three methods of estimating the right-turn adjustment factor to the three cases are suggested in this study.

  • PDF

A Research of a Traffic Light Signal Classification Model using YOLOv5 for Autonomous Driving (자율주행을 위한 YOLOv5 기반 신호등의 신호 분류 모델 연구)

  • Joongjin Kook;Hakseung Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.61-64
    • /
    • 2024
  • As research on autonomous driving technology becomes more active, various studies on signal recognition of traffic lights are also being conducted. When recognizing traffic lights with different purposes and shapes, such as pedestrian traffic lights, vehicle-only traffic lights, and right-turn traffic lights, existing classification methods may cause misrecognition problems. Therefore, in this study, we studied a model that allows accurate signal recognition by subdividing the classification of signals according to the purpose and type of traffic lights. A signal recognition model was created by classifying traffic lights according to their shape and purpose into horizontal, vertical, right turn, etc., and by comparing them with the existing signal recognition model based on YOLOv5, it was confirmed that more correct and accurate recognition was possible.

  • PDF

Impacts of Pre-signals on Traffic Crashes at 4-leg Signalized Intersections (전방신호기가 교통사고에 미치는 영향 연구)

  • Kim, Byeongeun;Lee, Youngihn
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.135-146
    • /
    • 2013
  • PURPOSES : This study aimed to analyze the impact the operation of pre-signals at 4-leg signalized intersections and present primary environmental factors of roads that need to be considered in the installation of pre-signals. METHODS : Shift of proportions safety effectiveness evaluation method which assesses shifts in proportions of target collision types to determine safety effectiveness was applied to analyze traffic crash by types. Also, Empirical Bayes before/after safety effectiveness evaluation method was adapted to analyze the impact pre-signal installation. Negative binomial regression was conducted to determine SPF(safety performance function). RESULTS : Pre-signals are effective in reducing the number of head on, right angle and sideswipe collisions and both the total number of personal injury crashes and severe crashes. Also, it is deemed that each factor used as an independent variable for the SPF model has strong correlation with the total number of personal injury crashes and severe crashes, and impacts general traffic crashes as a whole. CONCLUSIONS: This study suggests the following should be considered in pre-signal installation on intersections. 1) U-turns allowed in the front and rear 2) A high number of roads that connect to the intersection 3) Many right-turn traffic flows 4) Crosswalks installed in the front and rear 5) Insufficient left-turn lanes compared to left-turn traffic flows or no left-turn-only lane.

A Study on the Operational Efficiency of Intersection Shared Lanes (교차로 공용차로 운영 효율성 분석)

  • Park, Kun-Young;Lee, Si-Bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • This study focuses on operational analysis of 2 types of intersection shared lanes. First, the analysis showed that a through & right-turn shared lane is always less used than the adjacent through-only lanes and as a result, operational efficiency deteriorates. To improve the efficiency fine-tuning in signal timing optimization using lane-by-lane traffic volume data is required. Further improvement can be achieved by guiding drivers to equally use the shared lane. For left-turn & U-turn shared lanes, it was found that saturation flow rate is affected by interference between U-turn and conflicting right-turn movements. However, since such interference does not occur in every cycle, a statistical model must be established to develop realistic adjustment factor for saturation flow rate of the shared lane.

Study on the Appropriate Time for Leading Pedestrian Intervals (보행자 우선 출발신호의 적정 시간 산출 연구)

  • Kim, Daekyung;Yoon, Suyoung;Yoon, Jinsoo;Kim, Sang-Ock;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • When pedestrians cross a pedestrian crossing during a pedestrian signal, there is a problem that pedestrians are exposed to the danger of traffic accidents due to permissive-left turning and right-turning vehicles. In order to solve this problem, there is an increasing demand to improve the traffic signal system to increase pedestrian safety at the signal crossing. This study aims to examine the feasibility of introducing a leading pedestrian interval(LPI) to prevent conflict between unprotected left and right turn vehicles and pedestrians. In this study, the need for LPI was surveyed by experts and the general public. As a result of the survey, many opinions indicated that the introduction of LPI was necessary. In addition, after selecting the non-protected left and right turn pilot operation targets, LPI was installed on two signal intersections. After installation, the speed analysis of the arrival vehicle in the pedestrian crossing and the violation rate of the pedestrian signal were analyzed. As a result of analysis, when the walking signal was equalized, the speed of the arriving vehicle in the pedestrian crossing was reduced, and the violation rate of the walking signal was improved.

Fundamental Research on Developing Additional Information System by Connecting Route Guidance Information with Turn Signal Operation (경로유도정보와 방향지시등을 연동한 추가정보 제공 시스템 개발의 기초 연구)

  • Jeon, Yong-Wook;Daimon, Tatsuru
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.63-71
    • /
    • 2009
  • A car navigation system as an in-vehicle route guidance information (RGI) offers a state-of-the-art technological solution to driver navigation in an unfamiliar area. However, the RGI is provided by some pre-determined options in terms of the interface between a driver and a car navigation system. Drivers occasionally pass the target intersection owing to non- or late- recognizing it. This paper is examined the position of driver's turn signal operation and intersection recognition approaching at the target intersection which is difficult to identify, as a fundamental research on developing the additional RGI connecting with the turn signal control. The field experiment was conducted to measure distances of the turn signal operation and the intersection recognition from the target intersection according to left turns, right turns, and landmarks at adjacent intersection. And glance behavior to the car navigation display was evaluated by using an eye camera. The results of the field study indicate that, most case of driving, drivers operate the turn signal until 40m to 50m before coming to the target intersection. The driving simulator experiment was performed to examine the effectiveness of providing the additional RGI when drivers did not operate the turn signal approaching at the target intersection based on the results of the field study. To provide the additional RGI is effective for the intersection identification and recognition, and expected to improve the traffic safety and the comfort for drivers.

An Analysis of Effectiveness for Permissive Warrants on the Restrictive Left-Turn Signal Control in Urban Arterial Roads (도시 간선도로에서 제한적 좌회전 신호운영의 적용기준 및 효과분석에 관한 연구)

  • Jeong, In-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • There are many limitations in dealing with rapidly changing traffic demand in urban cities. Thus recently, traffic operation and management skills are more emphasized rather than the expansion of traffic facilities. In particular, in the interrupted flow formed by signalized intersections, it is quite important to give optimal signal timing to each intersection with consideration of progression. However, as fixed signal times per direction can affect passing capacity in signalized intersections, the present four-signal phase including a left-turn signal has many limitations, including reduction of directional road capacity when traffic demand is increases dramatically during peak hours. Because of this problem, lots of studies about internal metering techniques for oversaturated signal control skills have progressed but these techniques are not used widely due to the absence of detectors for queue sensing in real-time signal control systems. In this research, a new methodology called the "restrictive left-turn signal control", which is already used at the intersection above Samsung subway station, is suggested in order to reduce control delay of urban arterial roads. The restrictive left-turn signal control allows a driver to make a U-turn and then a right turn instead of turning left in that intersection. With this change, the restrictive left-turn signal control can contribute to increased intersection capacity by reducing the number of signal phases and maximizing the through phase time. However, road structure and traffic conditions at the target intersections should be considered before the adoption of the proposed signal control.

A hierarchical path finding algorithm with the technique of minimizing the number of turn (방향전환 최소화 기법을 적용한 계층 경로 탐색 알고리즘)

  • Moon, Dae-Jin;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.323-326
    • /
    • 2007
  • When traveling on real road network, it generally takes less travel time in a near straight path than a zig-zaged path with same source and destination. In order to making a left(right/u) turn, the delay should be required to decrease the speed. The traffic signal waiting time of left(right/u) turn is probably longer than straight driving. In this paper, we revise the previous hierarchical path finding algorithm to reduce the number of turns. The algorithm proposed in this paper complied with a hierarchical $A^*$ algorithm, but has a distinct strategy for edge weight. We define an edge that makes a turn as a turn-edge and give the turn-edge lower weight to maintain the straightness of the whole path.

  • PDF