• Title/Summary/Keyword: rice proteins

Search Result 249, Processing Time 0.03 seconds

Proteomic Analysis of Proteins Increased or Reduced by Ethanol of Lactobacillus plantarum ST4 Isolated from Makgeolli, Traditional Korean Rice Wine

  • Lee, Seung-Gyu;Lee, Kang-Wook;Park, Tae-Heung;Park, Ji-Yeong;Han, Nam-Soo;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.516-525
    • /
    • 2012
  • LAB were isolated from makgeolli locally produced around Jinju, Gyeongnam, S. Korea during spring of 2011. Randomly selected 11 isolates from MRS agar plates were identified first by API CHL 50 kits and then 16S rRNA gene sequencing. All 11 isolates were identified as Lactobacillus plantarum. Among them, ST4 grew in MRS broth with ethanol up to 10%, showing the highest alcohol resistance. L. plantarum ST4 was moderately resistant against acid and bile salts. When cellular proteins of L. plantarum ST4 under ethanol stress were analyzed by two-dimensional gel electrophoresis (2DE), the intensities of 6 spots increased, whereas 22 spots decreased at least 2-fold. Those 28 spots were identified by peptide mass fingerprinting (PMF). FusA2 (elongation factor G) increased 18.8-fold (6% ethanol) compared with control. Other proteins were AtpD (ATP synthase subunit beta), DnaK, GroEL, Tuf (elongation factor Tu), and Npr2 (NADH peroxidase), respectively. Among the 22 proteins decreased in intensities, lactate dehydrogenases (LdhD and LdhL1) were included.

Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf Under Heat Stress

  • Lee, Dong-Gi;Ahsan, Nagib;Kim, Yong-Goo;Kim, Kyung-Hee;Lee, Sang-Hoon;Lee, Ki-Won;Rahman, Md. Atikur;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.159-166
    • /
    • 2013
  • We have previously investigated the proteome changes of rice leaves under heat stress (Lee et al. in Proteomics 2007a, 7:3369-3383), wherein a group of antioxidant proteins and heat shock proteins (HSPs) were found to be regulated differently. The present study focuses on the biochemical changes and gene expression profiles of heat shock protein and antioxidant genes in rice leaves in response to heat stress ($42^{\circ}C$) during a wide range of exposure times. The results show that hydrogen peroxide and proline contents increased significantly, suggesting an oxidative burst and osmotic imbalance under heat stress. The mRNA levels of chaperone 60, HSP70, HSP100, chloroplastic HSP26, and mitochondrial small HSP responded rapidly and showed maximum expression after 0.5 or 2 h under heat stress. Transcript levels of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and Cu-Zn superoxide dismutase (Cu-Zn SOD) showed a rapid and marked accumulation upon heat stress. While prolonged exposure to heat stress resulted in increased transcript levels of monodehydroascorbate reductase, peroxidase, glyoxalase 1, glutathione reductase, thioredoxin peroxidase, 2-Cysteine peroxiredoxin, and nucleoside diphosphate kinase 1, while the transcription of catalase was suppressed. Consistent with their changes in gene expression, the enzyme activities of APX and DHAR also increased significantly following exposure to heat stress. These results suggest that oxidative stress is usually caused by heat stress, and plants apply complex HSP- and antioxidant-mediated defense mechanisms to cope with heat stress.

Development of Competitive Indirect ELISA for the Detection of Buckwheat in Processed Foods (가공식품 중 메밀 검출을 위한 경합 ELISA의 개발)

  • Back, Su-Yeon;Do, Jeong-Ryong;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.269-275
    • /
    • 2014
  • We developed a competitive indirect enzyme-linked immunosorbent assay (ciELISA) for determining the buckwheat content in processed foods by using rabbit polyclonal antibodies against buckwheat proteins (BWP). The detection limit of this assay was $0.05-100{\mu}g/mL$. The cross-reactivities of the anti-BWP antibodies toward BWP, buckwheat flour, whole buckwheat, and cereals (wheat flour, whole wheat, black bean, mung bean, red bean, brack rice, brown rice, glutinous rice, white rice, millet, African millet, nonglutinous millet, adlay, and rye) were 100, 17.9, 11.8, and 0%, respectively. Thus, the antibodies were found to be specific for buckwheat only. When buckwheat flour was heated for 30 min, the mean assay recoveries of BWP were 83.0% at $60-90^{\circ}C$ and 44.5% at $100^{\circ}C$. The spike test showed that the mean assay recoveries of buckwheat from raw noodle, boiled noodle, starch gel, and cereal flour were 99.1, 98.6, 81.1, and 104%, respectively. For the 22 commercial items tested, the qualitative coincidence ratio of assay result and the corresponding value indicated on the item's package label was 100%. However, the average quantitative coincidence ratios from 12 commercial items were 31.6%. Thus, the results suggest that ciELISA is an efficient tool to detect buckwheat in processed foods.

Molecular Analysis and Expression Patterns of the 14-3-3 Gene Family from Oryza Sativa

  • Yao, Yuan;Du, Ying;Jiang, Lin;Liu, Jin-Yuan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.349-357
    • /
    • 2007
  • The ubiquitous family of 14-3-3 proteins functions as regulators in a variety of physiological processes. Eight rice 14-3-3 genes, designated OsGF14a through h, were identified from an exhaustive search of the genome database. Comparisons of deduced amino acid sequences reveal a high degree of identity among members of the OsGF14 family and reported Arabidopsis 14-3-3 proteins. A phylogenetic study indicates that OsGF14s contain both $\varepsilon$ and non-$\varepsilon$ forms, which is also confirmed by a structural analysis of OsGF14 genes. Furthermore, transcripts of OsGF14b, OsGF14c, OsGF14d, OsGF14e, OsGF14f and OsGF14g were detected in rice tissues. Their different expression patterns, the different effects of environmental stresses and plant hormones on their transcription levels, and the different complementary phenotypes in yeast 14-3-3 mutants not only indicates that OsGF14s are responsive to various stress conditions and regulated by multiple signaling pathways, but also suggests that functional similarity and diversity coexist among the members of OsGF14 family.

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.

Functional characterization of a CCCH type zinc-finger protein gene OsZF2 by ectopic overexpression of the gene in rice (과발현 형질전환벼에서 CCCH type zinc-finger protein 유전자 OsZF2 기능 분석)

  • Lee, Jung-Sook;Yoon, In-Sun;Yoon, Ung-Han;Lee, Gang-Seob;Byun, Myung-Ok;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • We have previously isolated a CCCH type zinc-finger protein gene, OsZF2 (Oryza sativa Zinc Finger 2), from the cold-treated rice cDNA library. To investigate the potential role of OsZF2, transgenic rice lines over-expressing OsZF2 under the control of CaMV 35S promoter have been developed through Agrobacterium-mediated transformation. Elevated level of OsZF2 transcripts was confirmed by RNA gel blot analysis in transgenic rice. Under the 100 mM NaCl condition, the transgenic rice showed significantly enhanced growth rate in terms of shoot length and fresh weight, implicating that OsZF2 is likely to be involved in salt response of rice. In the field condition, however, the transgenic rice showed a dwarf phenotype and flowering time was delayed. Genome expression profiling analysis of transgenic plants using the 20K NSF rice oligonucleotide array revealed many up-regulated genes related to stress responses and signaling pathways such as chaperone protein dnaJ 72, salt stress-induced protein, PR protein, disease resistance proteins RPM1 and Cf2/Cf5 disease resistance protein, carbohydrate/ sugar transporter, OsWAK kinase, brassinosteroid LRR receptor kinase, and jasmonate O-methyltransferase. These data suggest that the CCCH type zinc-finger protein OsZF2 is a upstream transcriptional factor regulating growth and stress responsiveness of rice.

Agronomic and Chemical Properties of a New Black Waxy Giant Embryo Mutant, Milyang 263, in Rice (Oryza sativa L.)

  • Park, Dong-Soo;Park, Soo-Kwon;Yi, Gihwan;Hwang, Un-Ha;Kim, Sang-Min;Han, Sang-Ik;Seo, Woo-Duck;Lee, Jong-Hee;Cho, Jun-Hyun;Song, You-Chun;Yeo, Un-Sang;Jang, Ki-Chang;Kwon, Taek-Min;Nam, Min-Hee;Park, Sung-Tae;Kang, Hang-Won
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.463-469
    • /
    • 2010
  • Rice is a staple food for more than 50% of the world's population. Embryo comprises only 2 to 3% of the weight distribution of the entire pericarp but has higher concentration of vitamins, proteins, and essential fatty acids than the other parts of grains. Moreover, ${\alpha}$-tocoperol, ${\gamma}$-oryzanol, phytic acid and ${\gamma}$-aminobutric acid that have nutraceutical value are abundant. Increasing the volume of embryo assures the fortification of nutritional value of rice grain. We developed new black waxy giant embryo rice, Milyang 263 by crossing Josaengheugchal, a black waxy rice variety, and $ge^t$, a giant embryo mutant generated by tissue culture. The nutrient contents and physical properties of Milyang 263 were compared with several giant embryo mutants and normal embryo rice varieties. Changes in the nutrient properties after germination were also observed. Results indicated that this new black waxy giant embryo rice, Milyang 263, offers a promising source for improving nutritional quality of rice especially anthocyanin, essential minerals, and GABA.

Inhibitory Effect of the Ethanol Extract of a Rice Bran Mixture Comprising Angelica gigas, Cnidium officinale, Artemisia princeps, and Camellia sinensis on Brucella abortus Uptake by Professional and Nonprofessional Phagocytes

  • Hop, Huynh Tan;Arayan, Lauren Togonon;Reyes, Alisha Wehdnesday Bernardo;Huy, Tran Xuan Ngoc;Baek, Eun Jin;Min, WonGi;Lee, Hu Jang;Lee, Chun Hee;Rhee, Man Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1885-1891
    • /
    • 2017
  • In this study, we evaluated the inhibitory effect of a rice bran mixture extract (RBE) on Brucella abortus pathogenesis in professional (RAW 264.7) and nonprofessional (HeLa) phagocytes. We fermented the rice bran mixture and then extracted it with 50% ethanol followed by gas chromatography-mass spectrometry to identify the components in RBE. Our results clearly showed that RBE caused a significant reduction in the adherence of B. abortus in both cell lines. Furthermore, analysis of phagocytic signaling proteins by western blot assay revealed that RBE pretreatment resulted in inhibition of phosphorylation of JNK, ERK, and p38, leading to decline of internalization compared with the controls. Additionally, the intensity of F-actin observed by fluorescence microscopy and FACS was remarkably reduced in RBE-pretreated cells compared with control cells. However, the intracellular replication of B. abortus within phagocytes was not affected by RBE. Taken together, these findings suggest that the phagocytic receptor blocking and suppressive effects of RBE on the MAPK-linked phagocytic signaling pathway could negatively affect the invasion of B. abortus into phagocytes.

OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice

  • Shin, Jun-Hye;Yoshimoto, Kohki;Ohsumi, Yoshinori;Jeon, Jong-seong;An, Gynheung
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • Autophagy degrades toxic materials and old organelles, and recycles nutrients in eukaryotic cells. Whereas the studies on autophagy have been reported in other eukaryotic cells, its functioning in plants has not been well elucidated. We analyzed the roles of OsATG10 genes, which are autophagy-related. Two rice ATG10 genes - OsATG10a and OsATG10b - share significant sequence homology (about 75%), and were ubiquitously expressed in all organs examined here. GUS assay indicated that OsATG10b was highly expressed in the mesophyll cells and vascular tissue of younger leaves, but its level of expression decreased in older leaves. We identified T-DNA insertional mutants in that gene. Those osatg10b mutants were sensitive to treatments with high salt and methyl viologen (MV). Monodansylcadaverine-staining experiments showed that the number of autophagosomes was significantly decreased in the mutants compared with the WT. Furthermore, the amount of oxidized proteins increased in MV-treated mutant seedlings. These results demonstrate that OsATG10b plays an important role in the survival of rice cells against oxidative stresses.

Preparation for Calcium and Iron-binding Peptides from Rice Bran Protein Hydrolysates (미강 단백질 가수분해물로부터 Ca, Fe 결합된 peptide 제조)

  • Jeon, So-Jeong;Lee, Ji-Hye;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.174-178
    • /
    • 2010
  • Calcium and iron binding peptides were prepared by enzymatic hydrolysis and ultrafiltration of rice bran protein (RBP), which was isolated from defatted rice bran by phytase and xylanase treatment and ultrasonication. The isolated RBP had a molecular weight in the range of 10-66 kDa. The extracted proteins were hydrolyzed using Flavourzyme for 6 hr. After ultrafiltration under 5 kDa as molecular weight, the peptides were fractionated into 4 peaks by Sephadex G-15 gel permeation chromatography, and each fraction was determined for calcium and iron binding activity. As the result, Fl and F2 fractions were the best candidate for calcium and iron chelation, respectively. These results suggest that the calcium and iron binding peptides can be used as functional food additives in food industry.