References
- Arnau, J., K. I. Sorensen, K. Appel, F. K. Vogensen, and K. Hammer. 1996. Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology 142: 1685-1691. https://doi.org/10.1099/13500872-142-7-1685
- Broadbent, J. R., R. L. Larsen, V. Deibel, and J. L. Steele. 2010. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J. Bacteriol. 192: 2445-2458. https://doi.org/10.1128/JB.01618-09
- Bron, P. A., D. Molenaar, W. M. de Vos, and M. Kleerebezem. 2006. DNA micro-array based identification of bile-responsive genes in Lactobacillus plantarum. J. Appl. Microbiol. 100: 728-738. https://doi.org/10.1111/j.1365-2672.2006.02891.x
- Caldas, T. D., A. El. Yaagoubi, and G. Richarme. 1998. Chaperone properties of bacterial elongation factor EF-Tu. J. Biol. Chem. 273: 11478-11482. https://doi.org/10.1074/jbc.273.19.11478
- Cho, M. J., B. S. Jeon, J. W. Park, T. S. Jung, J. Y. Song, W. K. Lee, et al. 2002. Identifying the major proteome components of Helicobacter pylori strain 26695. Electrophoresis 23: 1161-1173. https://doi.org/10.1002/1522-2683(200204)23:7/8<1161::AID-ELPS1161>3.0.CO;2-7
- De Angelis, M., R. Di Cagno, C. Huet, C. Crecchio, P. F. Fox, and M. Gobbetti. 2004. Heat shock response in Lactobacillus plantarum. Appl. Environ. Microbiol. 70: 1336-1346. https://doi.org/10.1128/AEM.70.3.1336-1346.2004
- Desmond, C., G. F. Fitzgerald, C. Stanton, and R. P. Ross. 2004. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl. Environ. Microbiol. 70: 5929-5936. https://doi.org/10.1128/AEM.70.10.5929-5936.2004
- Ding, W. K. and N. P. Shah. 2007. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 72: M446-M450. https://doi.org/10.1111/j.1750-3841.2007.00565.x
- G-Alegria, E., I. Lopez, J. I. Ruiz, J. Saenz, E. Fernandez, M. Zarazaga, M. Dizy, C. Torres, and F. Ruiz-Larrea. 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilization and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. Lett. 230: 53-61. https://doi.org/10.1016/S0378-1097(03)00854-1
- Hong, Y., Y. B. Kim, S. O. Park, and E. H. Choi. 1997. Microflora and physicochemical characteristics of nuruk and main mashes during fermentation of a traditional Andong-soju. Food Sci. Biotechnol. 6: 297-303.
- Jin, J., S. Y. Kim, Q. Jin, H. J. Eom, and N. S. Han. 2008. Diversity analysis of lactic acid bacteria in takju, Korean rice wine. J. Microbiol. Biotechnol. 18: 1678-1682.
- Kim, H. R., Y. H. Kwon, S. J. Jo, J.-H. Kim, and B.-H. Ahn. 2009. Characterization and volatile flavor components in glutinous rice wines prepared with different yeasts of nuruks. J. Food Sci. Technol. 41: 296-301 (in Korean)
- Kim, H. R., J.-H. Kim, D.-H. Bae, and B.-H. Ahn. 2010. Characterization of yakju brewed from glutinous rice and wild-type yeast strains isolated from nuruks. J. Microbiol. Biotechnol. 20: 1702-1710.
- Kim, H. S., J. S. Hyun, J. Kim, H. P. Ha, and T. S. Yu. 1998. Enzymological characteristics and identification of useful fungi isolated from traditional Korean nuruk. Korean J. Appl. Microbiol. Biotechnol. 26: 456-464 (in Korean)
- Kim, W. S., L. Perl, J. H. Park, J. E. Tandianus, and N. W. Dunn. 2001. Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol. 43: 346-350. https://doi.org/10.1007/s002840010314
- Koebmann, B. J., D. Nilsson, O. P. Kuipers, and P. R. Jensen. 2000. The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis. J. Bacteriol. 182: 4738-4743. https://doi.org/10.1128/JB.182.17.4738-4743.2000
- Lee, J. W. and J. Y. Shim. 2010. Quality characteristics of makgeolli during freezing storage. Food Eng. Prog. 14: 328-334 (in Korean).
- Lee, Y. K. and S. Salminen. 1995. The coming of age of probiotics. Trends Food Sci. Technol. 6: 241-245. https://doi.org/10.1016/S0924-2244(00)89085-8
- Le Marrec, C., E. Bon, and A. Lonvaud-Funel. 2007. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int. J. Food Microbiol. 15: 335-342.
- Liu, S.-Q. 2002. A review malolactic fermentation in wine - beyond deacidification. J. Appl. Microbiol. 92: 589-602. https://doi.org/10.1046/j.1365-2672.2002.01589.x
- O'Connell, K. L. and J. T. Stults. 1997. Identification of mouse liver proteins on two-dimensional electrophoresis gel by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis 18: 349-359. https://doi.org/10.1002/elps.1150180309
- Park, J. C., M. Ok, J. Y. Cha, and Y. S. Cho. 2003. Isolation and identification of the high-glutathione producing Saccharomyces cerevisiae FF-8 from Korean traditional rice wine and optimal producing conditions. J. Korean Soc. Agric. Chem. Biotech. 46: 348-352 (in Korean)
- Pieterse, B., R. J. Leer, F. H. Schuren, and M. J. van der Werf. 2005. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151: 3881-3894. https://doi.org/10.1099/mic.0.28304-0
- Plumed-Ferrer, C., K. M. Koistinen, T. L. Tolonen, S. J. Lehesranta, S. O. Karenlampi, E. M. Kimattila, V. Joutsjoki, V. Virtanen, and A. von Wright. 2008. Comparative study of sugar fermentation and protein expression patterns of two Lactobacillus plantarum strains grown in three different media. Appl. Environ. Microbiol. 74: 5349-5358. https://doi.org/10.1128/AEM.00324-08
- Salotra, P., D. K. Singh, K. P. Seal, N. Krishna, H. Jaffe, and R. Bhatnagar. 1995. Expression of DnaK and GroEL homologs in Leuconostoc mesenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol Lett. 15: 57-62.
- Sanchez, B., M. C. Champomier-Verges, P. Anglade, F. Baraige, C. G. D. Reyes-Gavilan, A. Margolles, and M. Zagorec. 2005. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J. Bacteriol. 187: 5799-5808. https://doi.org/10.1128/JB.187.16.5799-5808.2005
- Seo, D. H., J. H. Jung, H. Y. Kim, Y. R. Kim, S. J. Ha, Y. C. Kim, and C. S. Park. 2007. Identification of lactic acid bacteria involved in traditional Korean rice wine fermentation. Food Sci. Biotechnol. 16: 994-998.
- Seo, M. J. and S. R. Ryu. 2002. Screening and characteristics of ethanol tolerant strain Saccharomyces cerevisiae SE211. Korean J. Appl. Microbiol. Biotechnol. 30: 216-222 (in Korean)
- Shin, Y. D. and D. H. Cho. 1970. A study on the microflora changes during takju brewing. Kor. J. Microbiol. 8: 53-64 (in Korean)
- Sico, M. A., M. G. Bonomo, A. D'Adamo, S. Bochicchio, and G. Salzano. 2009. Fingerprinting analysis of Oenococcus oeni strains under stress conditions. FEMS Microbiol. Lett. 296: 11-17. https://doi.org/10.1111/j.1574-6968.2009.01611.x
- Stark, H., V. M. Rodnina, H. J. Wieden, F. Zemlin, W. Wintermeyer, and M. van Heel. 2002. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9: 849-854.
- Wickner, S., J. Hoskins, and K. McKenney. 1991. Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature 350: 165-167. https://doi.org/10.1038/350165a0
- Wilkins, J. C., K. A. Homer, and D. Beighton. 2002. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl. Environ. Microbiol. 68: 2382-2390. https://doi.org/10.1128/AEM.68.5.2382-2390.2002
Cited by
- Proteomic Analysis of Proteins of Weissella confusa 31 Affected by Bile Salts vol.22, pp.10, 2012, https://doi.org/10.4014/jmb.1203.03066
- 막걸리에서 분리한 젖산세균인 Lactobacillus casei HK-9의 특성 및 항균 활성 vol.27, pp.3, 2012, https://doi.org/10.7841/ksbbj.2012.27.3.161
- Characterization of a Fibrinolytic Enzyme Secreted by Bacillus amyloliquefaciens CB1 and Its Gene Cloning vol.23, pp.7, 2013, https://doi.org/10.4014/jmb.1302.02065
- Isolation and Characterization of Lactic Acid Bacteria from Kimchi, Korean Traditional Fermented Food to Apply into Fermented Dairy Products vol.33, pp.1, 2013, https://doi.org/10.5851/kosfa.2013.33.1.75
- Patagonian red wines: selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation vol.29, pp.9, 2013, https://doi.org/10.1007/s11274-013-1337-x
- Overexpression of aprE2, a Fibrinolytic Enzyme Gene from Bacillus subtilis CH3-5, in Escherichia coli and the Properties of AprE2 vol.24, pp.7, 2012, https://doi.org/10.4014/jmb.1401.01034
- Proteome phenotyping of ΔrelA mutants in Enterococcus faecalis V583 vol.60, pp.8, 2012, https://doi.org/10.1139/cjm-2014-0254
- Synergistic Effect of Oleanolic Acid on Aminoglycoside Antibiotics against Acinetobacter baumannii vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137751
- 공액리놀레산 생성 Lactobacillus plantarum 선발 및 이를 이용한 콩-분말 두유에서 공액리놀레산 생산 vol.51, pp.3, 2012, https://doi.org/10.7845/kjm.2015.5045
- Functional proteomics within the genus Lactobacillus vol.16, pp.6, 2016, https://doi.org/10.1002/pmic.201500117
- Ethanol-induced stress response of Staphylococcus aureus vol.63, pp.9, 2012, https://doi.org/10.1139/cjm-2017-0221
- Proteomics study of extracellular fibrinolytic proteases fromBacillus licheniformisRO3 andBacillus pumilus2.g isolated from Indonesian fermented food vol.55, pp.None, 2017, https://doi.org/10.1088/1755-1315/55/1/012025
- Effects of different types of salts on the growth of lactic acid bacteria and yeasts during kimchi fermentation vol.27, pp.2, 2012, https://doi.org/10.1007/s10068-017-0251-7
- Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. bulgaricus vol.200, pp.9, 2012, https://doi.org/10.1007/s00203-018-1552-9
- Characterization of Lactobacillus plantarum strains isolated from black raspberry and their effect on BALB/c mice gut microbiota vol.27, pp.6, 2018, https://doi.org/10.1007/s10068-018-0420-3
- Transcriptional Regulator AcrR Increases Ethanol Tolerance through Regulation of Fatty Acid Synthesis in Lactobacillus plantarum vol.85, pp.22, 2012, https://doi.org/10.1128/aem.01690-19