DOI QR코드

DOI QR Code

Proteomic Analysis of Proteins Increased or Reduced by Ethanol of Lactobacillus plantarum ST4 Isolated from Makgeolli, Traditional Korean Rice Wine

  • Lee, Seung-Gyu (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Lee, Kang-Wook (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Park, Tae-Heung (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Park, Ji-Yeong (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, BK21 Education and Research Center for Advanced Bio-Agriculture Technology, Chungbuk National University) ;
  • Kim, Jeong-Hwan (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University)
  • Received : 2011.09.07
  • Accepted : 2011.11.28
  • Published : 2012.04.28

Abstract

LAB were isolated from makgeolli locally produced around Jinju, Gyeongnam, S. Korea during spring of 2011. Randomly selected 11 isolates from MRS agar plates were identified first by API CHL 50 kits and then 16S rRNA gene sequencing. All 11 isolates were identified as Lactobacillus plantarum. Among them, ST4 grew in MRS broth with ethanol up to 10%, showing the highest alcohol resistance. L. plantarum ST4 was moderately resistant against acid and bile salts. When cellular proteins of L. plantarum ST4 under ethanol stress were analyzed by two-dimensional gel electrophoresis (2DE), the intensities of 6 spots increased, whereas 22 spots decreased at least 2-fold. Those 28 spots were identified by peptide mass fingerprinting (PMF). FusA2 (elongation factor G) increased 18.8-fold (6% ethanol) compared with control. Other proteins were AtpD (ATP synthase subunit beta), DnaK, GroEL, Tuf (elongation factor Tu), and Npr2 (NADH peroxidase), respectively. Among the 22 proteins decreased in intensities, lactate dehydrogenases (LdhD and LdhL1) were included.

Keywords

References

  1. Arnau, J., K. I. Sorensen, K. Appel, F. K. Vogensen, and K. Hammer. 1996. Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology 142: 1685-1691. https://doi.org/10.1099/13500872-142-7-1685
  2. Broadbent, J. R., R. L. Larsen, V. Deibel, and J. L. Steele. 2010. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J. Bacteriol. 192: 2445-2458. https://doi.org/10.1128/JB.01618-09
  3. Bron, P. A., D. Molenaar, W. M. de Vos, and M. Kleerebezem. 2006. DNA micro-array based identification of bile-responsive genes in Lactobacillus plantarum. J. Appl. Microbiol. 100: 728-738. https://doi.org/10.1111/j.1365-2672.2006.02891.x
  4. Caldas, T. D., A. El. Yaagoubi, and G. Richarme. 1998. Chaperone properties of bacterial elongation factor EF-Tu. J. Biol. Chem. 273: 11478-11482. https://doi.org/10.1074/jbc.273.19.11478
  5. Cho, M. J., B. S. Jeon, J. W. Park, T. S. Jung, J. Y. Song, W. K. Lee, et al. 2002. Identifying the major proteome components of Helicobacter pylori strain 26695. Electrophoresis 23: 1161-1173. https://doi.org/10.1002/1522-2683(200204)23:7/8<1161::AID-ELPS1161>3.0.CO;2-7
  6. De Angelis, M., R. Di Cagno, C. Huet, C. Crecchio, P. F. Fox, and M. Gobbetti. 2004. Heat shock response in Lactobacillus plantarum. Appl. Environ. Microbiol. 70: 1336-1346. https://doi.org/10.1128/AEM.70.3.1336-1346.2004
  7. Desmond, C., G. F. Fitzgerald, C. Stanton, and R. P. Ross. 2004. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl. Environ. Microbiol. 70: 5929-5936. https://doi.org/10.1128/AEM.70.10.5929-5936.2004
  8. Ding, W. K. and N. P. Shah. 2007. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 72: M446-M450. https://doi.org/10.1111/j.1750-3841.2007.00565.x
  9. G-Alegria, E., I. Lopez, J. I. Ruiz, J. Saenz, E. Fernandez, M. Zarazaga, M. Dizy, C. Torres, and F. Ruiz-Larrea. 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilization and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. Lett. 230: 53-61. https://doi.org/10.1016/S0378-1097(03)00854-1
  10. Hong, Y., Y. B. Kim, S. O. Park, and E. H. Choi. 1997. Microflora and physicochemical characteristics of nuruk and main mashes during fermentation of a traditional Andong-soju. Food Sci. Biotechnol. 6: 297-303.
  11. Jin, J., S. Y. Kim, Q. Jin, H. J. Eom, and N. S. Han. 2008. Diversity analysis of lactic acid bacteria in takju, Korean rice wine. J. Microbiol. Biotechnol. 18: 1678-1682.
  12. Kim, H. R., Y. H. Kwon, S. J. Jo, J.-H. Kim, and B.-H. Ahn. 2009. Characterization and volatile flavor components in glutinous rice wines prepared with different yeasts of nuruks. J. Food Sci. Technol. 41: 296-301 (in Korean)
  13. Kim, H. R., J.-H. Kim, D.-H. Bae, and B.-H. Ahn. 2010. Characterization of yakju brewed from glutinous rice and wild-type yeast strains isolated from nuruks. J. Microbiol. Biotechnol. 20: 1702-1710.
  14. Kim, H. S., J. S. Hyun, J. Kim, H. P. Ha, and T. S. Yu. 1998. Enzymological characteristics and identification of useful fungi isolated from traditional Korean nuruk. Korean J. Appl. Microbiol. Biotechnol. 26: 456-464 (in Korean)
  15. Kim, W. S., L. Perl, J. H. Park, J. E. Tandianus, and N. W. Dunn. 2001. Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol. 43: 346-350. https://doi.org/10.1007/s002840010314
  16. Koebmann, B. J., D. Nilsson, O. P. Kuipers, and P. R. Jensen. 2000. The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis. J. Bacteriol. 182: 4738-4743. https://doi.org/10.1128/JB.182.17.4738-4743.2000
  17. Lee, J. W. and J. Y. Shim. 2010. Quality characteristics of makgeolli during freezing storage. Food Eng. Prog. 14: 328-334 (in Korean).
  18. Lee, Y. K. and S. Salminen. 1995. The coming of age of probiotics. Trends Food Sci. Technol. 6: 241-245. https://doi.org/10.1016/S0924-2244(00)89085-8
  19. Le Marrec, C., E. Bon, and A. Lonvaud-Funel. 2007. Tolerance to high osmolality of the lactic acid bacterium Oenococcus oeni and identification of potential osmoprotectants. Int. J. Food Microbiol. 15: 335-342.
  20. Liu, S.-Q. 2002. A review malolactic fermentation in wine - beyond deacidification. J. Appl. Microbiol. 92: 589-602. https://doi.org/10.1046/j.1365-2672.2002.01589.x
  21. O'Connell, K. L. and J. T. Stults. 1997. Identification of mouse liver proteins on two-dimensional electrophoresis gel by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis 18: 349-359. https://doi.org/10.1002/elps.1150180309
  22. Park, J. C., M. Ok, J. Y. Cha, and Y. S. Cho. 2003. Isolation and identification of the high-glutathione producing Saccharomyces cerevisiae FF-8 from Korean traditional rice wine and optimal producing conditions. J. Korean Soc. Agric. Chem. Biotech. 46: 348-352 (in Korean)
  23. Pieterse, B., R. J. Leer, F. H. Schuren, and M. J. van der Werf. 2005. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151: 3881-3894. https://doi.org/10.1099/mic.0.28304-0
  24. Plumed-Ferrer, C., K. M. Koistinen, T. L. Tolonen, S. J. Lehesranta, S. O. Karenlampi, E. M. Kimattila, V. Joutsjoki, V. Virtanen, and A. von Wright. 2008. Comparative study of sugar fermentation and protein expression patterns of two Lactobacillus plantarum strains grown in three different media. Appl. Environ. Microbiol. 74: 5349-5358. https://doi.org/10.1128/AEM.00324-08
  25. Salotra, P., D. K. Singh, K. P. Seal, N. Krishna, H. Jaffe, and R. Bhatnagar. 1995. Expression of DnaK and GroEL homologs in Leuconostoc mesenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol Lett. 15: 57-62.
  26. Sanchez, B., M. C. Champomier-Verges, P. Anglade, F. Baraige, C. G. D. Reyes-Gavilan, A. Margolles, and M. Zagorec. 2005. Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J. Bacteriol. 187: 5799-5808. https://doi.org/10.1128/JB.187.16.5799-5808.2005
  27. Seo, D. H., J. H. Jung, H. Y. Kim, Y. R. Kim, S. J. Ha, Y. C. Kim, and C. S. Park. 2007. Identification of lactic acid bacteria involved in traditional Korean rice wine fermentation. Food Sci. Biotechnol. 16: 994-998.
  28. Seo, M. J. and S. R. Ryu. 2002. Screening and characteristics of ethanol tolerant strain Saccharomyces cerevisiae SE211. Korean J. Appl. Microbiol. Biotechnol. 30: 216-222 (in Korean)
  29. Shin, Y. D. and D. H. Cho. 1970. A study on the microflora changes during takju brewing. Kor. J. Microbiol. 8: 53-64 (in Korean)
  30. Sico, M. A., M. G. Bonomo, A. D'Adamo, S. Bochicchio, and G. Salzano. 2009. Fingerprinting analysis of Oenococcus oeni strains under stress conditions. FEMS Microbiol. Lett. 296: 11-17. https://doi.org/10.1111/j.1574-6968.2009.01611.x
  31. Stark, H., V. M. Rodnina, H. J. Wieden, F. Zemlin, W. Wintermeyer, and M. van Heel. 2002. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9: 849-854.
  32. Wickner, S., J. Hoskins, and K. McKenney. 1991. Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA. Nature 350: 165-167. https://doi.org/10.1038/350165a0
  33. Wilkins, J. C., K. A. Homer, and D. Beighton. 2002. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl. Environ. Microbiol. 68: 2382-2390. https://doi.org/10.1128/AEM.68.5.2382-2390.2002

Cited by

  1. Proteomic Analysis of Proteins of Weissella confusa 31 Affected by Bile Salts vol.22, pp.10, 2012, https://doi.org/10.4014/jmb.1203.03066
  2. 막걸리에서 분리한 젖산세균인 Lactobacillus casei HK-9의 특성 및 항균 활성 vol.27, pp.3, 2012, https://doi.org/10.7841/ksbbj.2012.27.3.161
  3. Characterization of a Fibrinolytic Enzyme Secreted by Bacillus amyloliquefaciens CB1 and Its Gene Cloning vol.23, pp.7, 2013, https://doi.org/10.4014/jmb.1302.02065
  4. Isolation and Characterization of Lactic Acid Bacteria from Kimchi, Korean Traditional Fermented Food to Apply into Fermented Dairy Products vol.33, pp.1, 2013, https://doi.org/10.5851/kosfa.2013.33.1.75
  5. Patagonian red wines: selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation vol.29, pp.9, 2013, https://doi.org/10.1007/s11274-013-1337-x
  6. Overexpression of aprE2, a Fibrinolytic Enzyme Gene from Bacillus subtilis CH3-5, in Escherichia coli and the Properties of AprE2 vol.24, pp.7, 2012, https://doi.org/10.4014/jmb.1401.01034
  7. Proteome phenotyping of ΔrelA mutants in Enterococcus faecalis V583 vol.60, pp.8, 2012, https://doi.org/10.1139/cjm-2014-0254
  8. Synergistic Effect of Oleanolic Acid on Aminoglycoside Antibiotics against Acinetobacter baumannii vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137751
  9. 공액리놀레산 생성 Lactobacillus plantarum 선발 및 이를 이용한 콩-분말 두유에서 공액리놀레산 생산 vol.51, pp.3, 2012, https://doi.org/10.7845/kjm.2015.5045
  10. Functional proteomics within the genus Lactobacillus vol.16, pp.6, 2016, https://doi.org/10.1002/pmic.201500117
  11. Ethanol-induced stress response of Staphylococcus aureus vol.63, pp.9, 2012, https://doi.org/10.1139/cjm-2017-0221
  12. Proteomics study of extracellular fibrinolytic proteases fromBacillus licheniformisRO3 andBacillus pumilus2.g isolated from Indonesian fermented food vol.55, pp.None, 2017, https://doi.org/10.1088/1755-1315/55/1/012025
  13. Effects of different types of salts on the growth of lactic acid bacteria and yeasts during kimchi fermentation vol.27, pp.2, 2012, https://doi.org/10.1007/s10068-017-0251-7
  14. Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. bulgaricus vol.200, pp.9, 2012, https://doi.org/10.1007/s00203-018-1552-9
  15. Characterization of Lactobacillus plantarum strains isolated from black raspberry and their effect on BALB/c mice gut microbiota vol.27, pp.6, 2018, https://doi.org/10.1007/s10068-018-0420-3
  16. Transcriptional Regulator AcrR Increases Ethanol Tolerance through Regulation of Fatty Acid Synthesis in Lactobacillus plantarum vol.85, pp.22, 2012, https://doi.org/10.1128/aem.01690-19