• Title/Summary/Keyword: rice paddy field air

Search Result 49, Processing Time 0.03 seconds

Relationship between rice grain filling of chucheongbyeo and climatic variables of maturing Period in paddy field

  • Choi, Byoung-Rourl;Jang, Jung-Hee;Won, Tae-Jin;Lee, Jong-Hyeong;Han, Sang-Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.311-311
    • /
    • 2017
  • The relationships between rice grain filling and air temperature of maturing period in paddy field were analyzed to evaluate the effects of climatic change on rice productivity in Korea. Data of air temperature of 31, 41 and 51 days after heading(DAH) for 11 years from 2002 to 2016 were collected and analyzed to determine the effects on rice yield and yield component related traits of Chucheogbyeo, popular cultivar in Gyeonggi province in Korea. As the results, ripening ratio was closely correlated with the mean of daily maximum temperature (DMAT $r=0.71^*$), the mean of daily temperature difference (DTD, $r=0.67^*$) of 41 DAH and DTD ($0.65^*$) of 51 DAH. Weight of 1,000 paddy rice grains was closely correlated with accumulated sunshine hours (ASH) of 31 ($r=0.84^{**}$), 41 ($r=0.75^{**}$), 51 ($r=0.72^*$) DAH. Brown rice grain weight recovery ratio was closely correlated with DTD ($r=0.76^{**}$) and ASH ($r=0.84^{**}$) of 31 DAH, DMAT ($r=0.75^{**}$, $r=0.79^{**}$), DTD ($r=0.79^{**}$, $r=0.77^{**}$) and ASH ($r=0.81^{**}$, $r=0.79^{**}$) of 41 and 51 DAH. Paddy rice yield was closely correlated with MDT ($r=-0.63^*$) of 31 DAH, mean of daily minimum temperature (DMIT, $r=-0.83^{**}$, $r=-0.70^*$), DTD ($r=0.71^*$, $r=0.62^*$) of 31 and 41 DAH. Brown rice yield was correlated closely with DMIT ($r=-0.86^{**}$, $r=-0.73^*$) and DTD ($r=0.80^{**}$, $r=0.72^*$) of 31, 41 DAH, and DTD ($r=0.69^*$) of 51 DAH. Milled rice yield was correlated closely with DMIT ($r=-86^{**}$, $r=-0.73^*$), DTD ($r=0.79^{**}$, $r=0.71^*$) of 31, 41 DAH, and DTD ($r=0.68^*$) of 51 DAH.

  • PDF

Studies on the Direct Sowing Culture of Rice in Reclaimed Paddy Field (간척답 벼 직파재배에 관한 연구)

  • Lee, Seok-Su;Shim, Jae-Sung
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.49-62
    • /
    • 1992
  • This study was carried out to investigate the emergence, growth and yield components in rice inassoccation with Several cultivation methods direct sowing flooded paddy field(DSF), direct sowing by airplane(DSA), direct sowing in dry paddy field(DSD), 8days seedling planting(8DS), and 35days seedlingplanting(35DS). Also this study was attempeted to know the effects of calcium peroxide on germinationand early growth of rice under different soil conditions, seeding depth, application of organic matter,indirect sowing flooded paddy field.1. Rate of emergence was 73% in DSF, 70% in DSA, 62% in DSD, respectively, under the different cultivation method of rice in reclaimed paddy field.2. Degree of lodging in relation to cultivation was 5 at both DSF and DSA, 3 at DSD, 2 at both 8DS and 35DS respectively.3. Maximum tiller number was 568 per m2 at DSF and 527 at DSA. Heating was delayed for 4 days at DSF, 8 days at DSD and 2 days at 8DS as comparison with that at 35DS.4. Yield was higher 1% to 3% at DSF than that at DSA and DSD while decreased by 12% as compared with that of seedling planting.5. Total dry weight of seedling was decreased by 57% at 8DS, 60% at DSF 63% at DSD, respectively, under 0.3% of salinity. Ratio of decreasing in dry weight was higher with high salinity.6. The amount of O2 released was recorded highest to 2 to 3days after irrigatition, thereafter remaining constant to 10 days after irrigatition.7. The optimum coating amount of calcium peroxide for germination was a half of rice seed weight with 1 cm sowing depth and one-fold with 2-cm sowing depth when rice straw was not applied. With rice straw applied, on the other hand, the amount of peroxide was one-fold with 1-cm sowing depth. It was found that, under the condition of applied 600kg/10a, of 2-cm soil depth with rice straw calcium peroxide coating had no effect on emergence of rice seedling.8. In reclaimed paddy field, lodging degree was 7 with direct sowing by machine and 9 with direct sowing by hand.9. Yield was increased by 5% by applying rice straw with direct sowing by machine.

  • PDF

Measurements of Gases Emissions form Agricultural Soils and Their Characteristics with Chamber Technique: Emissions of NO and $N_2O$ (챔버를 이용한 농작지로부터의 기체배출량의 측정과 배출특성연구: 일산화질소(NO)와 아질산가스($N_2O$)의 배출량산정)

  • 김득수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.203-212
    • /
    • 2001
  • During the growing season from June to August, 2000, the soil NO and $N_2$O fluxes were measured to elucidate characteristics of soil nitrogen emissions from different types of intensively managed agricultural soils at outskirts of Kunsan City, located in the western inland of Korea, Flux measurements were made using a closed chamber technique at two different agricultural fields; one was made from upland field, and the other from rice paddy field. The flux data from upland field were collected for both the green onion and soybean field. Concentrations of NO and $N_2$O inside a flux chamber ar 15 minute sampling interval were measured to determine their soil emissions. Either polyethylene syringes of teflon air bags were used for gas samples of $N_2$O and NO. The analysis of NO and $N_2$O was made using a chemiluminesence NO analyzer and GC-ECD, respectively no later than few hours after sample collection at laboratory. The gas fluxes were varied more than one standard deviation around their means. Relatively high soil gas emissions occurred in the aftermoon for both NO and $N_2$O. A sub-peak for $N_2$O emission was observed in the morning period, but not in the case of NO. NO emissions from rice paddy field were much less than those from upland site. It seems that water layer over the rice paddy field prevents gases from escaping from the soil surface covered with were during the irrigation and acts as a sink of these gases. The NO fluxes resulted from these field experiments were compared to those from grass soil and they were found to be much higher. Diurnal and daily variations of NO and $N_2$O emission were discussed and correlated with the effects of nitrogen fertilizer application on the increase of the level of soil nitrogen availability.

  • PDF

Characteristics of Rice and Paddy Soil under No-Till Direct-Sown Rice-Wheat Cropping System

  • Cho, Young-Son;Choe, Zhin-Ryong;Lee, Byeong-Zhin
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • No-till direct-sown rice-wheat relaying cropping system has major advantages such as labor and cost saving by eliminating tillage and preparation of seed bed and transplanting. In this system, rice sowing was done simultaneously wheat harvesting. A paddy field experiment was conducted to evaluate effects of no-till years on soil microbial changes and soil physico-chemical characteristics with rice growth and development. Chemical fertilizers and agricultrual chemicals was not applied in no-till system. As the year in no-till direct-sown system the air permeability was increased and after water submerging soluble nitrogen was released Aerobic microbial-n was highest in May and then decreased after water irrigation. The population of aerobic soil microorganisms were steeply decreased after water submerging Soil microorganisms was decreased with the increased the soil depth. A month was needed for the seedling establishment in a no-tillage rice-wheat cropping system. Increased cropping years improved leaf greenness and leaf area index(LAI). But stomatal conductance(Gc) was higher in conventional cultivation system than no-till system. Stomatal conductance at panicle initiation stage was increased higher in conventional condition of leaves but the difference between conventional and no-till system was increased at heading stage. In no-till 4 years condition rice grain yield was spikelet numbers per panicle.

  • PDF

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Air Temperature Profile within a Partially Developed Paddy Rice Canopy (생육중기 벼 군락 내 기온의 연직구조)

  • Yoon Young-Kwan;Yun Jin-Il;Kim Kyu-Rang;Park Eun-Woo;Hwan Heon;Cho Seong-In
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.204-208
    • /
    • 2000
  • Little information is available for the temporal variation in air temperature profile within rice canopies under development, while much works have been done for a fully developed canopy. Fine wire thermocouples of 0.003 mm diameter (chromel-constantan) were installed at 10 vertical heights by a 10 cm step in a paddy rice field to monitor the air temperatures over and within the developing rice canopy from one month after transplanting (June 29) to just before heading (August 24). According to a preliminary analysis of the data, we found neither the daytime temperature maximum nor the night time minimum at the active radiation surface (the canopy height with maximum leafages) during this period, which is a typical profile of a fully developed canopy. Air temperature within the canopy never exceeded that above the canopy at 1.5 m height during the daytime. Temporal march of the within-canopy profile seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures.

  • PDF

Estimation of Net Biome Production in a Barley-Rice Double Cropping Paddy Field of Gimje, Korea (김제 보리-벼 이모작지에서의 순 생물상생산량의 추정)

  • Shim, Kyo-Moon;Min, Sung-Hyun;Kim, Yong-Seok;Jung, Myung-Pyo;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.173-181
    • /
    • 2015
  • Fluxes of carbon dioxide ($CO_2$) were measured above crop canopy using the Eddy Covariance (EC) method, and emission rate of methane ($CH_4$) was measured using Automatic Open/Close Chamber (AOCC) method during the 2012-2013 barley and rice growing season in a barley-rice double cropping field of Gimje, Korea. The net ecosystem exchange (NEE) of $CO_2$ in the paddy field was analyzed to be affected by crop growth (biomass, LAI, etc.) and environment (air temperature, solar radiation, etc.) factors. On the other hand, the emission rate of $CH_4$ was estimated to be affected by water management (soil condition). NEE of $CO_2$ in barley, rice and fallow period was -100.2, -374.1 and $+41.2g\;C\;m^{-2}$, respectively, and $CH_4$ emission in barley and rice period was 0.2 and $17.3g\;C\;m^{-2}$, respectively. When considering only $CO_2$, the barley-rice double cropping ecosystem was estimated as a carbon sink ($-433.0g\;C\;m^{-2}$). However, after considering the harvested crop biomass ($+600.3g\;C\;m^{-2}$) and $CH_4$ emission ($+17.5g\;C\;m^{-2}$), it turned into a carbon source ($+184.7g\;C\;m^{-2}$).

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Assessment of the Functions of Vegetation and Soil on the Nutrient Cycling in Paddy Field Ecosystem with Inflow of Animal Wastes (빗물에 의해 축산폐수가 유입되는 논 생태계에서 영양물질 순환에 미치는 토양과 식생의 영향평가)

  • Ahn, Yoon-Soo;Kang, Kee-Kyung;Kim, Sae-Geun;Roh, Kee-An;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This study was carried out to assess the roles of soil and vegetation on the nutrient cycling in paddy ecosystem where excessive amounts of animal wastes were flowed in due to the rain. Experimental sites included one abandoned and four cropping paddy fields which were moderately terraced under a small farm village raising 90 milk cows and 35 deer under open-air condition. The watershed covered 4 ha with every 50% of uptown and fodder crops. Concentrations of $NH_4-N$ and $P_2O_5$ in waste water flowed into the abandoned paddy field, enforced by the rain of $56.4mm\;day^{-1}$, were $8.3mg\;{\ell}^{-1}$ and $1.8mg\;{\ell}^{-1}$, respectively. Total mass of rainfall inflow to abandoned field during rice growing period (1 May to 30 Sept.) was $20,900Mg\;ha^{-1}$. Total amounts of $NH_4-N$ and $P_2O_5$ contained in that inflow were estimated as 173 kg and 38 kg, respectively. Concentrations in the outflow water through one abandoned and four rice paddy fields were reduced by 92% for $NH_4-N$ and 95% for $P_2O_5$, as compared to those in the inflows. The reserved portions of nutrients in the abandoned paddy field ecosystem, which were the summation of the uptake by weed and residues in soil, were 29% of the inflow amount for $NH_4-N$ and 30% for $P_2O_5$. These results demonstrated that soil and vegetation in paddy field ecosystem reduced the excessive nutrients from the animal waste inflow to the extents that might be suitable not only for the better growth of rice plant, located at the lower paddy fields, but also for preservation of the downstream from eutrophication.

  • PDF

Effects of Air Pollition on Rice Plant Growth (大氣汚染이 水稻生育에 미치는 影響)

  • 신응배;박완철;허기호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.11-21
    • /
    • 1986
  • The study was performed to investigate the effects of gaseous imission of sulfur dioxide and hydrogen fluoride on the growth of rice plant under stressed field conditions. The plants were cultivated in normal paddy fields where are 88 industrial plants operating with 285 smoke stacks emitting pollutants. There has been a number of reported studies (1, 3, 11, 19, 20) which deal with rice plant damages by air pollution under a simulated exposure experimental condition. Furthermore, these experiments were conducted to examine effects of a single pollutant on the plant. Furthermore, these experiments were conducted to examine effects of a single pollutant on the plant. In korea, however, there is no study reported in literature with respect to the in-situ dose-response relationship between rice pant reduction in yields and air pollution. This study is specifically dealt with multiple effects of sulfur dioxde and hydrogen fluoride on various plant growth indicators such as leaf damage, culm height, weight of grain, panicles per hill, spikelets per panicle and percent fertility.It appears that there is a good correlation between ambient concentrations of sulfur oxides and sulfur contents found in leaves with an average correlation coefficient of 0.868 within a 1% significance level. It is interesting to note that a better multiple correlation was found between percent leaf damage and sulfur and fluoride contentd found in leaf with a significance of 1% level. The yearly correlation coefficient ranges from 0.963 to 0.987 with an average being 0.971. It is, therefore, believed that a percent leaf damage may serve as a single indicator of pollutional damages to rice plant cultivating in fields. Regarding other factors to the diminution of rice plant growth in polluted atmosphere, it appears that a significant correlation to culm length and dry weight of grain with a 1% significance level whereas T/R ratio has a good correlation with lead damage within 5% significance level. An evaluation of data observed has demonstrated that both panicles per hill and percent fertility are significantly affected by air pollutants. As expected, hydrogen fluoride has more effects than sulfur oxide. It is, however, interesting to note that spikelets per panicles has slightly been affected while no indication of effects on 1000-grain-weight has been observed. This may lead to a conclusion that a reduction in yield of rice under polluted field conditions may have more been caused by the diminution of panicles per hill and percent fertility rather than by the diminution of spikelets per panicle and grain weight.

  • PDF