• 제목/요약/키워드: rice husk ash

검색결과 83건 처리시간 0.025초

소성볏짚을 혼입한 콘크리트의 압축강도 특성에 관한 연구 (A Study on the Compressive Strength Property of Concrete using Rice Straw Ash)

  • 정의창;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.26-27
    • /
    • 2015
  • The purpose of this study was to investigate the compressive strength property into concrete using rice straw ash.. In an effort to evaluate the effects of rice straw ash as mineral admixture, rice straw ash was mixed with cement at the mixture ratio of 0, 5, 10 and 15% relative to the cement weight. When the mixture ratio of rice straw ash was 10%, the highest compressive strength was observed, while the strength tended to decrease when the mixture ratio of rice straw ash was 15% even if it exhibited higher compressive strength than the plain. And it was observed that compressive strength of concrete containing rice husk ash was a similar a compressive strength of concrete containing silica fume.

  • PDF

A Study on High Performance Fine-Grained Concrete Containing Rice Husk Ash

  • Le, Ha Thanh;Nguyen, Sang Thanh;Ludwig, Horst-Michael
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.301-307
    • /
    • 2014
  • Rice husk ash (RHA) is classified as a highly reactive pozzolan. It has a very high silica content similar to that of silica fume (SF). Using less-expensive and locally available RHA as a mineral admixture in concrete brings ample benefits to the costs, the technical properties of concrete as well as to the environment. An experimental study of the effect of RHA blending on workability, strength and durability of high performance fine-grained concrete (HPFGC) is presented. The results show that the addition of RHA to HPFGC improved significantly compressive strength, splitting tensile strength and chloride penetration resistance. Interestingly, the ratio of compressive strength to splitting tensile strength of HPFGC was lower than that of ordinary concrete, especially for the concrete made with 20 % RHA. Compressive strength and splitting tensile strength of HPFGC containing RHA was similar and slightly higher, respectively, than for HPFGC containing SF. Chloride penetration resistance of HPFGC containing 10-15 % RHA was comparable with that of HPFGC containing 10 % SF.

Engineering behavior of expansive soils treated with rice husk ash

  • Aziz, Mubashir;Saleem, Masood;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.173-186
    • /
    • 2015
  • The rapid urbanization in Pakistan is creating a shortage of sustainable construction sites with good soil conditions. Attempts have been made to use rice husk ash (RHA) in concrete industry of Pakistan, however, limited literature is available on its potential to improve local soils. This paper presents an experimental study on engineering properties of low and high plastic cohesive soils blended with 0-20% RHA by dry weight of soil. The decrease in plasticity index and shrinkage ratio indicates a reduction in swell potential of RHA treated cohesive soils which is beneficial for problems related to placing pavements and footings on such soils. It is also observed that the increased formation of pozzolanic products within the pore spaces of soil from physicochemical changes transforms RHA treated soils to a compact mass which decreases both total settlement and rate of settlement. A notable increase in friction angle with increase in RHA up to 16% was also observed in direct shear tests. It is concluded that RHA treatment is a cost-effective and sustainable alternate to deal with problematic local cohesive soils in agro-based developing countries like Pakistan.

Mechanical and microstructural study of rice husk ash geopolymer paste with ultrafine slag

  • Parveen, Parveen;Jindal, Bharat Bhushan;Junaid, M. Talha;Saloni, Saloni
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.217-223
    • /
    • 2019
  • This paper presents the mechanical and microstructural properties of the geopolymer paste which was developed by utilizing the industrial by-products, rice husk ash (RHA) and ultra-fine slag. Ultra-fine slag particles with average particle size in the range of 4 to 5 microns. RHA is partially replaced with ultra-fine slag at different levels of 0 to 50%. Sodium silicate to sodium hydroxide ratio of 1.0 and alkaline liquid to binder (AL/B) ratio of 0.60 is taken. Setting time, compressive, flexural strengths were studied up to the age of 90 days with different concentrations of NaOH. The microstructure of the hybrid geopolymer paste was studied by performing the SEM, EDS, and XRD on the broken samples. RHA based geopolymer paste blended with ultrafine slag resulted in high compressive and flexural strengths and increased setting times of the paste. Strength increased with the increase in NaOH concentration at all ages. The ultra-small particles of the slag acted as a micro-filler into the paste and enhanced the properties by improving the CASH, NASH, and CSH. The maximum compressive strength of 70MPa was achieved at 30% slag content with 16M NaOH. The results of XRD, SEM, and EDS at 30% replacement of RHA with ultra-fine slag densified the paste microstructure.

Bio waste 소재로부터의 마이크로 필러 추출 (Extraction of Micro Filler from Bio-waste Material)

  • 남기법;송정일
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.209-214
    • /
    • 2018
  • 본 연구에서는 친환경적이고 공급이 안정적인 소재를 찾기 위하여, Bio waste인 쌀겨와 조개 껍질에서 활용하여 마이크로 사이즈의 미세 입자를 추출하고, 추출한 입자의 크기와 형상을 분석한 후 CFRP에 첨가하여 물성의 변화를 관찰하였다. 쌀겨와 탄화 쌀겨의 주요구성성분은 탄소, 산소, 규소로 이루어졌으며 탄화과정을 거치면서 탄소와 규소의 비율이 증가함을 확인하였고, 조개 껍질 분말에서는 탄소 산소와 칼슘이 검출되었으며 이는 조개 껍질의 주요구성물질인 탄산칼슘의 영향으로 보인다. 쌀겨 분말의 면적평균은 $6.19{\mu}m$ 체적평균은 $14.77{\mu}m$으로 FE-SEM을 통하여 막대형상의 입자가 관찰되며 이는 쌀겨가 가지고 있던 껍질부분의 주름이나 표면의 털이 남아있는 형상으로 보인다. 탄화쌀겨의 분말은 면적평균은 $1.55{\mu}m$ 체적평균은 $8.20{\mu}m$ 조개 껍질 분말은 면적평균은 $2.53{\mu}m$ 체적평균은 $5.79{\mu}m$로 분석되었으며 쌀겨분말의 경우 막대(Rod)형상의 입자들이 관찰되었고, 조개 껍질 분말의 경우 판상(Plate)의 형상을 가지는 것으로 관찰되었다. CFRP에 첨가하였을 경우 첨가량에 비례하여 물성의 하락이 관찰되었는데 그 폭이 쌀겨분말의 경우가 가장 컸으며, 조개 껍질 분말의 경우 물성하락을 거의 유발하지 않음을 확인하였다.

Optimizing cement replacement with rice husk ash and eggshell ash for enhanced mechanical properties of geopolymer concrete: A comparative study with and without admixture

  • Yashwanth Pamu;Venkata Sarath Pamu;Praveen Samarthi;Mahesh Kona
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.707-724
    • /
    • 2024
  • This paper proposes a study of cement replacement with rice husk ash (RHA) and eggshell ash (ESA) for enhanced mechanical properties of geopolymer (GP) concrete with and without admixture. The main objective is to investigate the mechanical properties of GP with various replacement levels of Pozzolana Portland cement by RHA and ESA. The GP resistance to durability is examined and impact of ash materials on concrete's durability performance is determined. The environmental benefits of using agricultural waste materials in GP manufacturing minimize cement usage and CO2 emissions. The goal is to assess value of RHA-ESA of building material, paving stones for structures to lessen environmental impact. The novelty lies in use of ESA and RHA as partial replacements for cement and investigation of admixtures to enhance concrete properties, and reduce environmental impact. The research contributes by introducing a novel approach to reducing cement consumption by using ESA and RHA to address environmental concerns. It also explores the potential benefits of admixtures improving concrete performance and reducing environmental pollution. A study is carried with and without impacts of admixture to find compressive strength of GP cubes. The cement has been replaced by RHA and ESA in the range of (2.5%+7.5%, 5%+5%, 7.5%+2.5) by weight of cement for M20 mix. The compressive strength (CS) and split tensile strength (STS) at 7days, 14 days and 28 days is obtained as 21 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 24 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 28 N/mm2 at 7.5%RHA+2.5%ESA and 2.8 at 7.5%ESA respectively with normal curing condition.

증해 추출 왕겨 분말을 혼입한 무시멘트 모르타르의 강도 특성 (A Strength on the Properties of Non-Cement Mortar containing Rice Husk Powder extracted from Digestion)

  • 조성은;조성원;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.225-226
    • /
    • 2021
  • Recently, environmental problems have emerged as a major issue all over the world due to an increase in carbon dioxide(CO2). The amount of CO2 generated during cement production accounts for 6% to 8% of domestic CO2 emissions and a solution to reduce CO2 emissions the construction industry is trying to use mineral admixtures to reduce cement. Since digestion has no firing process the advantage of it is that there is no air pollution to occur. In this study, we studied the compressive strength of binary non-cement mortar containing rice husk powder extracted from digestion by the ratio of 10%, 20%, 30%, 40%. As a result, the table flow was increased when the mixing rate of rice husk powder extracted from digestion was higher, and the highest compressive strength was shown when the rice husk powder extracted from digestion mixing rate was 10%.

  • PDF

왕겨재를 혼입한 투수성 폴리머 콘크리트의 공학적 성질 (Engineering Properties of Permeable Polymer Concrete with Rice-Husk Ash)

  • 성찬용;윤준노;김경태;김영익
    • 농업과학연구
    • /
    • 제25권1호
    • /
    • pp.89-96
    • /
    • 1998
  • 이 연구는 폴리머를 결합재로 사용하고 시멘트와 왕겨재를 충전재로 혼입한 투수용 폴리머 콘크리트의 공학적 성질을 구명한 것으로서, 이 연구를 통해 얻어진 결과를 요약하면 다음과 같다. 1. 각 강도는 시멘트와 왕겨재를 중량비로 반반씩 충전재로 사용한 투수용 폴리머 콘크리트에서 가장 크게 나타났고, 보통 시멘트 콘크리트보다 압축강도에서는 24%, 인장강도에서는 123%, 휨강도에서는 90%가 증가되었다. 2. 정탄성계수는 $1.27{\times}10^5{\sim}1.75{\times}10^5kgf/cm^2$으로 보통 시멘트 콘크리트의 58~70%정도로서 변형성이 크게 나타났으며, 충전재로는 시멘트와 왕겨재를 중량비로 반반씩 사용한 투수용 폴리머 콘크리트에서 가장 높은 값을 보였고 왕겨재의 혼입량이 많을수록 높은 값을 보였으며, 포아손수는 3.140~5.314로 보통 시멘트 콘크리트보다 작게 나타났다. 3. 초음파진동속도는 2,503~3,083m/sec로서 보통 시멘트 콘크리트와 거의 비슷하게 나타났으며, 시멘트와 왕겨재를 반반씩 충전재로 사용한 투수용 폴리머 콘크리트에서 비교적 높은 값을 보였다. 4. 투수량은 $4.612{\sim}5.913{\ell}/cm^2/hr$로서 배합설계에 따라 크게 좌우되었으며, 이러한 콘크리트는 투수를 요하는 구조물에 유용하게 이용할 수 있을 것이다.

  • PDF

소성된 볏짚을 혼입한 콘크리트 압축강도 특성 (The Properties of Concrete Compressive Strength used Rice Straw Ash)

  • 김영수;신상엽;정의창
    • 대한건축학회연합논문집
    • /
    • 제21권5호
    • /
    • pp.117-124
    • /
    • 2019
  • When manufacturing concrete, several mineral admixture is added to improve the basic physical property and durability and to make economical concrete. Such mineral admixture includes fly ash, granulated blast furnace slag, silica fume, etc., and not only the studies about mixing these mineral admixtures but also the studies for the development of new materials have been steadily in progress. Recently, some researchers have found, as a part of the development of new materials, the rice straw ash can also be used as a pozzolanic material for concrete considering similar chemical properties of rice straw ash to that of rice husk ash. But there has been insufficient amount of study about it. So, this study was to investigate the possibility as mineral admixture of agriculture by-product, by analyzing properties of concretes using rice straw ash with replacement ratio in comparison with other mineral admixture. In order to measure amount of SiO2 of rice straw ash, XRF(X-ray fluorescence) analysis was tested. For the measure pozzolanic reaction of rice straw ash, pH change and color change was tested according to curing day. Also to evaluate properties of concrete using rice straw ash, slump test, air contents test and compressive strength was tested.