• Title/Summary/Keyword: ribosomally synthesized

Search Result 3, Processing Time 0.015 seconds

Lantibiotics, Class I Bacteriocins from the Genus Bacillus

  • Lee, Hyung-Jae;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • Antimicrobial peptides exhibit high levels of antimicrobial activity against a broad range of spoilage and pathogenic microorganisms. Compared with bacteriocins produced by lactic acid bacteria, antimicrobial peptides from the genus Bacillus have been relatively less recognized despite their broad antimicrobial spectra. These peptides can be classified into two different groups based on whether they are ribosomally (bacteriocins) or nonribosomally (polymyxins and iturins) synthesized. Because of their broad spectra and high activity, antimicrobial peptides from Bacillus spp. may have great potential for applications in the food, agricultural, and pharmaceutical industries to prevent or control spoilage and pathogenic microorganisms. In this review, we introduce ribosomally synthesized antimicrobial peptides, the lantibiotic bacteriocins produced by members of Bacillus. In addition, the biosynthesis, genetic organization, mode of action, and regulation of subtilin, a well-investigated lantibiotic from Bacillus subtilis, are discussed.

Regulation of Class II Bacteriocin Production by Cell-Cell Signaling

  • Quadri, Luis E.N.
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.175-182
    • /
    • 2003
  • Production of ribosomally synthesized antimicrobial peptides usually referred to as bacteriocins is an inducible trait in several gram positive bacteria, particularly in those belonging to the group of lactic acid bacteria. In many of these organisms, production of bacteriocins is inducible and induction requires secretion and extracellular accumulation of peptides that act as chemical messengers and trigger bacteriocin production. These inducer peptides are often referred to as autoinducers and are believed to permit a quorum sensing-based regulation of bacteriocin production. Notably, the peptides acting as autoinducers are dedicated peptides with or without antimicrobial activity or the bacteriocins themselves. The autoinducer-dependent induction of bacteriocin production requires histidine protein kinases and response regulator proteins of two-component signal transduction systems. The current working model for the regulation of class II bacteriocin production in lactic acid bacteria and the most relevant direct and indirect pieces of evidence supporting the model are discussed in this minireview.

Isolation of a Lactococcus lactis Strain Producing Anti-staphylococcal Bacteriocin

  • Yang, Jung-Mo;Moon, Gi-Seong
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1315-1321
    • /
    • 2018
  • Bacteriocin is ribosomally synthesized by bacteria and inhibits closely related species. In this study we aimed at isolating lactic acid bacteria producing bacteriocin presenting anti-staphylococcal activity. A Lactococcus lactis strain was isolated from kimchi for the purpose and identified by 16S rRNA gene sequencing. As preliminary tests, optimal culture conditions, stabilities against heat, solvents, and enzymes treatments, and type of action (bacteriostatic or bactericidal) of the bacteriocin were investigated. The optimal culture conditions for production of the bacteriocin were MRS broth medium and $25^{\circ}C$ and $30^{\circ}C$ culture temperatures. The bacteriocin was acidic and the activity was abolished by a protease treatment. Its stability was maintained at $100^{\circ}C$ for 15 min and under treatments of various organic solvents such as methanol, ethanol, acetone, acetonitrile, and chloroform. Finally, the bacteriocin showed bactericidal action against Staphylococcus aureus where 200 AU/mL of the bacteriocin decreased the viable cell count (CFU/mL) of S. aureus by 2.5 log scale, compared with a control (no bacteriocin added) after 4-h incubation.