DOI QR코드

DOI QR Code

Isolation of a Lactococcus lactis Strain Producing Anti-staphylococcal Bacteriocin

  • Yang, Jung-Mo (Department of Biotechnology, Korea National University of Transportation) ;
  • Moon, Gi-Seong (Department of Biotechnology, Korea National University of Transportation)
  • 투고 : 2018.11.21
  • 심사 : 2018.12.16
  • 발행 : 2018.12.31

초록

Bacteriocin is ribosomally synthesized by bacteria and inhibits closely related species. In this study we aimed at isolating lactic acid bacteria producing bacteriocin presenting anti-staphylococcal activity. A Lactococcus lactis strain was isolated from kimchi for the purpose and identified by 16S rRNA gene sequencing. As preliminary tests, optimal culture conditions, stabilities against heat, solvents, and enzymes treatments, and type of action (bacteriostatic or bactericidal) of the bacteriocin were investigated. The optimal culture conditions for production of the bacteriocin were MRS broth medium and $25^{\circ}C$ and $30^{\circ}C$ culture temperatures. The bacteriocin was acidic and the activity was abolished by a protease treatment. Its stability was maintained at $100^{\circ}C$ for 15 min and under treatments of various organic solvents such as methanol, ethanol, acetone, acetonitrile, and chloroform. Finally, the bacteriocin showed bactericidal action against Staphylococcus aureus where 200 AU/mL of the bacteriocin decreased the viable cell count (CFU/mL) of S. aureus by 2.5 log scale, compared with a control (no bacteriocin added) after 4-h incubation.

키워드

과제정보

연구 과제 주관 기관 : Ministry for Food, Agriculture, Forestry and Fisheries

참고문헌

  1. Azad MAK, Sarker M, Li T, Yin J. 2018. Probiotic species in the modulation of gut microbiota: An overview. Biomed Res Int 2018:9478630.
  2. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM. 2018. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23-28. https://doi.org/10.1016/j.copbio.2017.07.011
  3. Chung DM, Kim KE, Jeong SY, Park CS, Ahn KH, Kim DH, Kang DO, Chun HK, Yoon BD, Koh HB, Kim HJ, Choi NS. 2011. Rapid concentration of some bacteriocin-like compounds using an organic solvent. Food Sci Biotechnol 20:1457-1459. https://doi.org/10.1007/s10068-011-0201-8
  4. Daeschel MA. 1992. Procedures to detect antimicrobial activities of microorganisms. In Food biopreservatives of microbial origin. Ray B, Daeschel M (ed). CRC Press, FL, USA. pp. 57-80.
  5. Dicks LMT, Dreyer L, Smith C, van Staden AD. 2018. A review: The fate of bacteriocins in the human gastro-intestinal tract: Do they cross the gut-blood barrier? Front Microbiol 9:2297. https://doi.org/10.3389/fmicb.2018.02297
  6. Elbanna K, El Hadad S, Assaeedi A, Aldahlawi A, Khider M, Alhebshi A. 2018. In vitro and in vivo evidences for innate immune stimulators lactic acid bacterial starters isolated from fermented camel dairy products. Sci Rep 8:12553. https://doi.org/10.1038/s41598-018-31006-3
  7. Etayash H, Azmi S, Dangeti R, Kaur K. 2015. Peptide bacteriocins--Structure activity relationships. Curr Top Med Chem 16:220-241. https://doi.org/10.2174/1568026615666150812121103
  8. Fetsch A, Contzen M, Hartelt K, Kleiser A, Maassen S, Rau J, Kraushaar B, Layer F, Strommenger B. 2014. Staphylococcus aureus food-poisoning outbreak associated with the consumption of ice-cream. Int J Food Microbiol 187:1-6. https://doi.org/10.1016/j.ijfoodmicro.2014.06.017
  9. Fitzgerald JR, Holden MT. 2016. Genomics of natural populations of Staphylococcus aureus. Annu Rev Microbiol 70:459-478. https://doi.org/10.1146/annurev-micro-102215-095547
  10. Gould IM. 2013. Treatment of bacteraemia: Meticillin-resistant Staphylococcus aureus (MRSA) to vancomycin-resistant S. aureus (VRSA). Int J Antimicrob Agents 42:S17-S21.
  11. Juturu V, Wu JC. 2018. Microbial production of bacteriocins: Latest research development and applications. Biotechnol Adv 36:2187-2200. https://doi.org/10.1016/j.biotechadv.2018.10.007
  12. Kos VN, Desjardins CA, Griggs A, Cerqueira G, Van Tonder A, Holden MT, Godfrey P, Palmer KL, Bodi K, Mongodin EF, Wortman J, Feldgarden M, Lawley T, Gill SR, Haas BJ, Birren B, Gilmore MS. 2012. Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States. MBio 3:e00112-12.
  13. Liu Y, Zhao F, Liu J, Wang H, Han X, Zhang Y, Yang Z. 2017. Selection of cholesterol-lowering lactic acid bacteria and its effects on rats fed with high-cholesterol diet. Curr Microbiol 74:623-631. https://doi.org/10.1007/s00284-017-1230-1
  14. Mallina R, Craik J, Briffa N, Ahluwalia V, Clarke J, Cobb AG. 2018. Probiotic containing Lactobacillus casei, Lactobacillus bulgaricus, and Streptococcus thermophiles (ACTIMEL) for the prevention of Clostridium difficile associated diarrhoea in the elderly with proximal femur fractures. J Infect Public Health 11:85-88. https://doi.org/10.1016/j.jiph.2017.04.001
  15. McGuinness WA, Malachowa N, DeLeo FR. 2017. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med 90:269-281.
  16. Moon GS, Jeong JJ, Ji GE, Kim JS, Kim JH. 2000. Characterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J Microbiol Biotechnol 10:507-513.
  17. Muenks CE, Hogan PG, Wang JW, Eisenstein KA, Burnham CD, Fritz SA. 2016. Diversity of Staphylococcus aureus strains colonizing various niches of the human body. J Infect 72:698-705. https://doi.org/10.1016/j.jinf.2016.03.015
  18. Paudyal N, Anihouvi V, Hounhouigan J, Matsheka MI, Sekwati-Monang B, Amoa-Awua W, Atter A, Ackah NB, Mbugua S, Asagbra A, Abdelgadir W, Nakavuma J, Jakobsen M, Fang W. 2017. Prevalence of foodborne pathogens in food from selected African countries - A meta-analysis. Int J Food Microbiol 249:35-43. https://doi.org/10.1016/j.ijfoodmicro.2017.03.002
  19. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Consortium M, Bork P, Ehrlich SD, Wang J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65. https://doi.org/10.1038/nature08821
  20. Sarao LK, Arora M. 2017. Probiotics, prebiotics, and microencapsulation: A review. Crit Rev Food Sci Nutr 57:344-371. https://doi.org/10.1080/10408398.2014.887055
  21. Seal BS, Drider D, Oakley BB, Brussow H, Bikard D, Rich JO, Miller S, Devillard E, Kwan J, Bertin G, Reeves S, Swift SM, Raicek M, Gay CG. 2018. Microbial-derived products as potential new antimicrobials. Vet Res 49:66. https://doi.org/10.1186/s13567-018-0563-5
  22. Shida K, Nomoto K. 2013. Probiotics as efficient immunopotentiators: Translational role in cancer prevention. Indian J Med Res 138:808-814.
  23. Wojtyniak K, Szajewska H. 2017. Systematic review: Probiotics for functional constipation in children. Eur J Pediatr 176:1155-1162. https://doi.org/10.1007/s00431-017-2972-2

피인용 문헌

  1. Nitroso-hemoglobin Increased the Color Stability and Inhibited the Pathogenic Bacteria in a Minced Beef Model: A Combined Low-field NMR Study vol.39, pp.5, 2018, https://doi.org/10.5851/kosfa.2019.e40
  2. Assays and enumeration of bioaerosols-traditional approaches to modern practices vol.54, pp.5, 2018, https://doi.org/10.1080/02786826.2020.1723789
  3. Bacteriocins: Properties and potential use as antimicrobials vol.36, pp.1, 2022, https://doi.org/10.1002/jcla.24093