• Title/Summary/Keyword: ribosomal

Search Result 1,076, Processing Time 0.026 seconds

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.

Double-stranded RNA virus in Korean Isolate IH-2 of Trichomonas vaginalis

  • Kim, Jong-Wook;Chung, Pyung-Rim;Hwang, Myung-Ki;Choi, Eun-Young
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.2 s.142
    • /
    • pp.87-94
    • /
    • 2007
  • In this study, we describe Korean isolates of Trichomonas vaginalis infected with double-stranded (ds) RNA virus (TVV). One T. vaginalis isolate infected with TVV IH-2 evidenced weak pathogenicity in the mouse assay coupled with the persistent presence of a dsRNA, thereby indicating a hypovirulence effect of dsRNA in T. vaginalis. Cloning and sequence analysis results revealed that the genomic dsRNA of TVV IH-2 was 4,647 bp in length and evidenced a sequence identity of 80% with the previously-described TVV 1-1 and 1-5, but only a 42% identity with TVV 2-1 and 3 isolates. It harbored 2 overlapping open reading frames of the putative capsid protein and dsRNA-dependent RNA polymerase (RdRp). As previously observed in the TVV isolates 1-1 and 1-5, a conserved ribosomal slip-page heptamer (CCUUUUU) and its surrounding sequence context within the consensus 14-nt overlap implied the gene expression of a capsid protein-RdRp fusion protein, occurring as the result of a potential ribosomal frameshift event. The phylogenetic analysis of RdRp showed that the Korean TVV If-2 isolate formed a compact group with TVV 1-1 and 1-5 isolates, which was divergent from TVV 2-1, 3 and other viral isolates classified as members of the Giardiavirus genus.

Analysis of the Phylogenetic Relationships in the Genus Spiraea Based on the Nuclear Ribosomal DNA ITS Region (핵 리보솜 DNA ITS 부위에 의한 조팝나무속 식물종의 계통 관계 분석)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Genus Spiraea is composed of many long-lived woody species that are primarily distributed throughout Asia and Europe. In this study, we evaluated a representative sample of the 38 taxa in the world, including 14 in Korea, with nuclear ribosomal DNA internal transcribed spacer sequences (ITS) to estimate genetic relationships within the genus. The molecular data allowed us to resolve well-supported clades in the taxa. In 47 world accessions (38 taxa: 14 Korean taxa, 33 world taxa, and 9 overlapping taxa), total alignment length was 689 positions, of which 452 were parsimony informative, 527 variable, 75 singleton, and 159 constant characters. Although the phylogenic tree showed that many taxa of genus Spiraea were well separated from each other, many branches were not congruent with the morphological characteristics and geographical distributions of the genus. There were 430 segregating sites and the nucleotide diversity (${\pi}$) value was 0.281. Under the neutral mutation hypothesis, the probability that the Tajima test statistic (D) is positive (2.325) is more than 0.5. Therefore, there may be a site at which natural selection, which increases genetic variation, is operating.

Selection and evaluation of reference genes for gene expression using quantitative real-time PCR in Mythimna separata walker (Lepidoptera: Noctuidae)

  • ZHANG, Bai-Zhong;LIU, Jun-Jie;CHEN, Xi-Ling;YUAN, Guo-Hui
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.390-399
    • /
    • 2018
  • In order to precisely assess gene expression levels, the suitable internal reference genes must be served to quantify real-time reverse transcription polymerase chain reaction (RT-qPCR) data. For armyworm, Mythimna separata, which reference genes are suitable for assessing the level of transcriptional expression of target genes have yet to be explored. In this study, eight common reference genes, including ${\beta}$-actin (${\beta}$-ACT), 18 s ribosomal (18S), 28S ribosomal (28S), glyceraldehyde-3-phosphate (GAPDH), elongation fator-alpha ($EF1{\alpha}$), TATA box binding protein (TBP), ribosomal protein L7 (RPL7), and alpha-tubulin (${\alpha}$-TUB) that in different developmental stages, tissues and insecticide treatments of M. separata were evaluated. To further explore whether these genes were suitable to serve as endogenous controls, three software-based approaches (geNorm, BestKeeper, and NormFinder), the delta Ct method, and one web-based comprehensive tool (RefFinder) were employed to analyze and rank the tested genes. The optimal number of reference genes was determined using the geNorm program, and the suitability of particular reference genes was empirically validated according to normalized HSP70, and MsepCYP321A10 gene expression data. We found that the most suitable reference genes for the different experimental conditions. For developmental stages, 28S/RPL7 were the optimal reference genes, both $RPL7/EF1{\alpha}$ were suitable for experiments of different tissues, whereas for insecticide treatments, $28S/{\alpha}-TUB$ were suitable for normalizations of expression data. In addition, $28S/{\alpha}-TUB$ were the suitable reference genes because they have the most stable expression among different developmental stages, tissues and insecticide treatments. Our work is the first report on reference gene selection in M. separata, and might serve as a precedent for future gene expression studies.

Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA (두족류의 진위 판별을 위한 Real-time Quantitative PCR 검사법 개발 및 검증)

  • Chung, In Young;Seo, Yong Bae;Yang, Ji Young;Kwon, Ki sung;Kim, Gun Do
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.280-288
    • /
    • 2018
  • In this study, an approach for the analysis of the five cephalopod species (octopus, long-arm octopus, squid, wet-foot octopus, beka squid) consumed in the Republic of Korea is developed. The samples were collected from the Southeast Asian countries Thailand, Indonesia, Vietnam, and China. The SYBR-green-based real-time qPCR method, based on the mitochondrial DNA genome of the five cephalopods was developed and validated. The intergroup variations in the mitochondrial DNA are evident in the bioinformatic analysis of the mitochondrial genomic DNA sequences of the five groups. Some of the highly-conserved and slightly-variated regions are identified in the mitochondrial cytochrome-c-oxidase subunit I (COI) gene, 16s ribosomal RNA (16s rRNA) gene, and 12s ribosomal RNA (12s rRNA) gene of these groups. To specify each five cephalopod groups, specific primer sets were designed from the COI, 16s rRNA and 12s rRNA regions. The specific primer sets amplified the DNA using the SYBR-green-based real-time PCR system and 11 commercially secured animal tissues: Octopus vulgaris, Octopus minor, Todarodes pacificus, Dosidicus gigas, Sepia esculenta, Amphioctopus fangsiao, Amphioctopus aegina, Amphioctopus marginatus, Loliolus beka, Loligo edulis, and Loligo chinensis. The results confirmed by a conveient way to calculate relative amplification levels between different samples in that it directly uses the threshold cycles (Ct)-value range generated by the qPCR system from these samples. This genomic DNA-based molecular technique provides a quick, accurate, and reliable method for the taxonomic classification of the animal tissues using the real-time qPCR.

Phylogeny of the subfamily Salmoninae distributed in Korea based upon nucleotide sequences of mitochondrial ribosomal RNA genes (미토콘드리아 ribosomal RNA 유전자 염기서열분석에 의한 한국산 연어아과 어류의 유전적 계통도)

  • LEE Heui-Jung;PARK Jung-Youn;LEE Jeong-Ho;MIN Kwang-Sik;JEON Im Gi;YOO Mi-Ae;LEE Won-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.2
    • /
    • pp.103-109
    • /
    • 2000
  • Complete senuences of the mitochondrial rRNA Benes were determined among six salmonines in Korean Waters (Brachpmystax lenok, Onoorhpchus keta, O. masou mason, O. mason ishikawae, O. mykiss, and albino mutant of O. mykiss). The purposes of this study were to provide the basic information on levels of mtDNA polymorphism among these species for genetic characterization; discuss phylogentic relationships among three Oncorhynchus sepecies; demonstrate the utility of rRNA gene sequence data as a genetic marker for disringuishinf among Korean salmonines. PCR/direct sequencing data indicated the following consistent results; 1) 12S rRNA genes was 945 bases long in Oncorhynchus species, and 946 bases in B. lenot including one insertion. 2) Of sequence variation in mitochondrial rRNA regions, transitional substitutions were superior to transversion. 3) The significant differences were not shown in the intraspecific variation values in these gene regions. The percentage sequence divergence values were ranged from $0.066 to 0.212{\%}$. 4) The interspecific divergences were greater than the intraspecific variation. Nevertheless, ribosomal RMh genes were more conserved among species than the other mitochondrial genes, and they showed potentiality as an intergenic marker for systematics. In addition, phylogenetic trees, constructed from this data, supported that cherry salmon was closer to chum salmon than to rainbow trout, and that lenok was most distantly related species in six salmonid species.

  • PDF

Comparison of scanning electron microscopic structures and nucleotide sequences variation of ITS1, 5.8S ribosomal RNA gene and ITS2 region in three Peruvian entomopathogenic fungal isolates (3종의 페루산 entomopathogenic fungi의 전자현미경적 구조와 ITS1, 5.8S ribosomal RNA gene, ITS2의 염기서열 다양성)

  • Han, Sang-Hoon;Nam, Sunghee;Lee, Heui-Sam;Yeo, Joo-Hong
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.137-141
    • /
    • 2013
  • In this study, nucleotide sequence structures of intergenic transcribed spacer (ITS) 1, complete 5.8S ribosomal RNA gene and ITS 2 region were analyzed to identify three Peruvian entomopathogenic fungal isolates. The isolates had highly conserved sequence region in 5.8S rRNA gene and unique sequences in ITS 1 and 2 region among them. 5.8S rRNA gene regions were highly conserved and showed high homoloies among tested isolates. In contrast, ITS region showed species-specific sequence region, resulting in inter-genus differencies. Scanning electron microscopic images of these isolates supported the result of ITS-based identification. From these result, Peruvian entomopathogenic fungal isolate J270, J278, were identified as Beauveria bassiana and J271 was identified as Lecanicillium attenuatum.

Reidentification of Colletotrichum gloeosporioides and C. acutatum Isolates Stored in Korean Agricultural Culture Collection (KACC) (한국농업미생물자원센터 (KACC)에 보존중인 Colletotrichum gloeosporioides와 C. acutatum의 재동정)

  • Kim, Dae-Ho;Jeon, Young-Ah;Go, Seung-Joo;Lee, Jong-Kyu;Hong, Seung-Beom
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.168-177
    • /
    • 2006
  • Thirty-nine strains of Colletotrichum gloeosporioides and 5 strains of C. acutatum stored in Korean Agricultural Culture Collection(KACC) were re-identified based on molecular characteristics of ribosomal internal transcribed spacer(ITS) and partial $\beta$-tubulin gene and cultural characteristics on potato dextrose agar(PDA) and Benomyl-added PDA. As the results, 19 strains were identified as C. acutatum with 13 strains of group A2, 5 strains of group A3, and 1 strain of group A4. In addition, 20 strains were identified as C. gloeosporioides with 18 strains of ribosomal DNA group(RG) 4 and 2 strains of RG6. The rest were identified as C. boninense RG5(2 strains), C. coccodes RG2(2 strains), and C. dematium RG12(1 strain). Out of domestic 31 strains, 12 strains were identified as C. acutatum A2, one strain as C. acutatum A3, 14 strains as C. gloeosporioides RG4, 2 strains as C. gloeosporioides RG6, one strains as C. boninense RG5 and one strain as C. dematium RG12. We also discussed taxonomy of C. gloeosporioides and C. acutatum and composition of C. gloeosporioides/C. acutatum isolates from major crops in Korea.

Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters (폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용)

  • Lee, Eun-Hee;Park, Hyunjung;Jo, Yun-Seong;Ryu, Hee Wook;Cho, Kyung-Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.147-156
    • /
    • 2010
  • There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into "partial community DNA analysis" and "whole community DNA analysis" approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.

Conservative Genes among 1,309 Species of Prokaryotes (원핵생물 1,309종의 보존적 유전자)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.463-467
    • /
    • 2022
  • As a result of applying the COG (Cluster of Orthologous Groups of Protein) algorithm to 1,309 species to confirm the conserved genes of prokaryotes, ribosomal protein S11 (COG0100) was identified. The numbers of conservative genes were 2, 5, 5, and 6 in 1,308, 1,307, 1,306, and 1,305 species, respectively. Twenty-nine genes were conserved in over 1,302 species, and they encoded 23 ribosomal proteins, 3 tRNA synthetases, 2 translation factors, and 1 RNA polymerase subunit. Most of them were related to protein production, suggesting the importance of protein expression in prokaryotes. The highest conservative COG was COG0048 (ribosomal protein S12) among the 29 COGs. The 29 conserved genes usually have one protein for each prokaryote. COG0090 (ribosomal protein L2) had not only the lowest conservation value but also the largest standard deviation of phylogenetic distance value. As COG0090 is not only a member of the ribosome, but also a regulator of replication and transcription, it could be inferred that prokaryotes have large variations in COG0090 to survive in various environments. This study could provide data necessary for basic science, tumor control, and development of antibacterial agents.