• Title/Summary/Keyword: ribose

Search Result 596, Processing Time 0.024 seconds

Association of a Methanol Extract of Rheum undulatum L. Mediated Cell Death in AGS Cells with an Intrinsic Apoptotic Pathway

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Jung, Myeong Ho;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.26-32
    • /
    • 2015
  • Objectives: Rheum undulatum L. has traditionally been used for the treatment of many diseases in Asia. However, its anti-proliferative activity in cancer has still not been studied. In the present study, we investigated the anti-cancer effects of methanol extract of Rheum undulatum L. (MERL) on human adenocarcinoma gastric cell lines (AGS). Methods: To investigate the anti-cancer effect of MERL on AGS cells, we treated the AGS cells with varying concentrations of MERL and performed 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Cell cycle analyses, measurements of the mitochondrial membrane potential (MMP), caspase activity assays and Western blots were conducted to determine whether AGS cell death occurred by apoptosis. Results: Treatment with MERL significantly inhibited growth of AGS cells in a concentration dependent manner. MERL treatment in AGS cells leaded to increased accumulation of apoptotic sub G1 phase cells in a concentration dependent manner. In control cultures, 5.38% of the cells were in the sub G1 phase. In MERL treated cells, however, this percentage was significantly increased (9.95% at $70{\mu}g/mL$, 15.94% at $140{\mu}g/mL$, 26.56% at $210{\mu}g/mL$ and 38.08% at $280{\mu}g/mL$). MERL treatment induced the decreased expression of pro-caspase-8 and -9 in a concentration dependent manner, whereas the expression of the active form of caspase-3 was increased. A subsequent Western blot analysis revealed increased cleaved levels of poly (ADP-ribose) polymerase (PARP) protein. Also, treatment with MERL increased the activities of caspase-3 and -9 compared with the control. MERL treatment increased the levels of the pro-apoptotic truncated Bid (tBid) and Bcl2 Antagonist X (Bax) proteins and decreased the levels of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, whose is the stabilization of mitochondria. However, inhibitions of p38, extracellular signal regulated kinases (ERKs) and C-Jun N-terminal kinases (JNK) by MERL treatment did not affect cell death. Conclusion: These results suggest that MERL mediated cell death is associated with an intrinsic apoptotic pathway in AGS cells.

Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts

  • Jung, Ji-Yeon;Park, Jae-Hong;Jeong, Yeon-Jin;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.289-295
    • /
    • 2006
  • Sodium fluoride (NaF) has been shown to be cytotoxic and elicit inflammatory response in human. However, the cellular mechanisms underlying NaF-induced cytotoxicity in periodontal tissues have not yet been elucidated. This study is aimed to investigate the mechanisms of NaF-induced apoptosis in human gingival fibroblast (HGF). NaF decreased the cell viability of HGF in a dose- and time-dependent manner. NaF gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. However, NaF did not affect the production of ROS. In addition, NaF augumented cytochrome c release from mitochondria into the cytosol, and enhanced caspase -9 and -3 activities., cleavage (85 kDa fragments) of poly (ADP-ribose) polymerase (PARP) and upregulation of voltage-dependent anion channel (VDAC) 1. These results demonstrated that NaF-induced apoptosis in HGF may be mediated with mitochondria. Furthermore, NaF elevated caspase-8 activity and upregulated Fas-ligand (Fas-L), suggesting involvement of death receptor mediated pathway in NaF-induced apoptosis. Expression of Bcl-2, an anti-apoptotic Bcl-2 family, was downregulated, whereas expression of Bax, a pro-apoptotic Bcl-2 family, was not affected in NaF-treated HGF. These results suggest that NaF induces apoptosis in HGF through both mitochondria- and death receptor-mediated pathway mediated by Bcl-2 family.

Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide

  • Lee, Ah Young;Choi, Ji Myung;Lee, Myoung Hee;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide $(H_2O_2)$-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to $250{\mu}M$ $H_2O_2$ for 24 h were treated with different concentrations of PO (25, 125, 250 and $500{\mu}g/mL$) and its major fatty acid, ALA (1, 2.5, 5 and $25{\mu}g/mL$). We examined the effects of PO and ALA on $H_2O_2$-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of $H_2O_2$ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the $H_2O_2$-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the $H_2O_2$-induced up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by $H_2O_2$. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.

Reactive oxygen species-dependent apoptosis induction by water extract of Citrus unshiu peel in MDA-MB-231 human breast carcinoma cells

  • Kim, Min Yeong;Choi, Eun Ok;HwangBo, Hyun;Kwon, Da He;Ahn, Kyu Im;Kim, Hong Jae;Ji, Seon Yeong;Hong, Su-Hyun;Jeong, Jin-Woo;Kim, Gi Young;Park, Cheol;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

A1E Induces Apoptosis via Targeting HPV E6/E7 Oncogenes and Intrinsic Pathways in Cervical Cancer Cells

  • Ham, Sun Young;Bak, Ye Sol;Kwon, Tae Ho;Kang, Jeong Woo;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yang, Young;Jung, Seung Hyun;Yoon, Do Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • A1E is an extract from traditional Asian medicinal plants that has therapeutic activities against cancers, metabolic disease, and other intractable conditions. However, its mechanism of action on cervical cancer has not been studied. In order to ascertain if A1E would have pronounced anti-cervical cancer effect, cervical cancer cells were incubated with A1E and apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blotting, Reverse-transcription polymerase chain reaction, and measurement of mitochondrial membrane potential. Expression of human papiloma virus E6 and E7 oncogenes was down-regulated in A1E-treated cervical cancer cells, while p53 and retinoblastoma protein levels were enhanced. A1E also perturbed cell cycle progression at sub-G1 and altered cell cycle regulatory factors in SiHa cervical cancer cells. A1E activated apoptotic intrinsic pathway markers such as caspase-9, caspase-3 and poly ADP-ribose polymerase, and down-regulated expression of Bcl-2 and Bcl-xl. A1E induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited phosphatidylinositol 3-kinase (PI3K)/Akt, key factors involved in cell survival signaling. Taken all these results, A1E induced apoptosis via activation of the intrinsic pathway and inhibition of the PI3K/Akt survival-signaling pathway in SiHa cervical cancer cells. In conclusion, A1E exerts anti-proliferative action growth inhibition on cervical cancer cells through apoptosis which demonstrates its anti-cervical cancer properties.

Akebiae Caulis Inhibits Oxidative Stress through AM PK Activation (AMPK 활성화를 통한 목통의 항산화 효과)

  • Jung, Eun Hye;Kim, Sang Chan;Cho, Il Je;Kim, Young Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • Akebiae Caulis is a galenical originated from Akebia quinata Decaisne species. It is commonly used in the treatment of oposiuria, inflammation, nociceptive and fever. Here, we investigated the effect of Akebiae Caulis extract (ACE) to protect hepatocyte against the malfunction of mitochondria and apoptosis. Arachidonic acid (AA)+iron promoted excessive reactive oxygen species (ROS) production and exerted a deleterious effect on mitochondria. Treatment with ACE protected hepatocytes from AA+iron-induced cytotoxicity, as shown by alterations in the protein levels related with apoptosis such as poly(ADP-ribose) polymerase, pro-caspase 3, Bcl-XL and Bcl-2. Moreover, AA+iron-induced $H_2O_2$ production, GSH depletion and mitochondrial dysfunction were alleviated by ACE pretreatment. As a potential molecular mechanism for the ACE-mediated cytoprotection, phosphorylation of AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death, was increased by ACE. Moreover, ACE treatment enhanced inactive phosphorylation of glycogen synthase kinase-$3{\beta}$ ($GSK3{\beta}$), downstream substrate kinase of AMPK. More importantly, ACE prevented a decrease in the $GSK3{\beta}$ phosphorylation derived by AA+iron, which might contribute to mitohondiral protection and cell survival. To further identify essential compounds in Akebiae Caulis for the protection of AA+iron-mediated cytotoxicity, we found that betulin in combination with hederagenin protected from AA+iron-induced mitochondrial dysfunction. Betulin+hederagenin treatment also increased inactive phosphorylation of $GSK3{\beta}$ in common with ACE. These results suggest that ACE protected hepatocytes against oxidative stress and mitochondrial dysfunction, which is mediated with inactive $GSK3{\beta}$ phosphorylation downstream of AMPK.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Anti-proliferative and Pro-apoptotic Effects by Lees Extracts of Ehwa Makgeolli Containing Oriental Herbs (한방이화주 주박 추출물에 의한 암세포 항성장 및 세포사멸 기전 연구)

  • Kwon, Min-Jeong;Lee, Seung Hoon;Chung, Chung Wook;Sohn, Ho-Yong;Shin, Woo-Chang;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.241-246
    • /
    • 2016
  • In the present study, ethanol extracts and their subsequent organic solvent fractions were extracted from the lees of Ehwa Makgeolli containing oriental herbs, a commercialized traditional Korean rice wine, and the prepared lees samples were designated as from KSD-E3-1 to KSD-E3-5. First, their effects on cell viability and on the expression of pro-apoptotic ATF3 and NAG-1 genes in human colorectal HCT116 cells were investigated. Among the treated lees samples, the hexane fraction (KSD-E3-2) and the ethyl acetate fraction (KSD-E3-3) of lees extracts from Ehwa Makgeolli significantly reduced cell viabilities, in a dose dependent manner. The treatment with KSD-E3-2 and KSD-E3-3 also increased the expression of pro-apoptotic NAG-1 and ATF-3 genes and their proteins, which were detected with RT-PCR and Western blot analysis, respectively. In addition, poly-(ADP-ribose) polymerase (PARP) cleavage was detected by treatment with the fraction KSD-E3-3, indicating that KSD-E3-3 could induce apoptosis in HCT116 cells. Interestingly, this PARP cleavage was recovered by transfection of NAG-1 small interfering RNA. The results indicate that NAG-1 is one of the genes responsible for apoptosis induced by the fraction KSD-E3-3 from Ehwa Makgeolli. Overall, the findings may help in understanding the molecular mechanisms of the anti-proliferative and pro-apoptotic activities mediated by the lees of Ehwa Makgeolli.

Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells (동충하초 유래 cordycepin에 의한 AGS 인체 위암세포의 apoptosis 유발)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.847-854
    • /
    • 2016
  • Cordycepin, a derivative of the nucleoside adenosine, is one of the active components extracted from fungi of genus Cordyceps, and has been shown to have many pharmacological activities. In this study, we investigated the effects of cordycepin on proliferation and apoptosis of human gastric cancer AGS cells, and its possible mechanism of action. Treatment of cordycepin resulted in significant decrease in cell viability of AGS cells in a concentration-dependent manner. A concentration-dependent apoptotic cell death was also measured by agarose gel electrophoresis and flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in an enhanced expression of tumor necrosis factor-related apoptosis-inducing ligand, death receptor 5 and Fas ligand. Furthermore, up-regulation of pro-apoptotic Bax, and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression were also observed in cordycepin-treated AGS cells. These were followed by activation of caspases (caspase-9, -8 and -3), subsequently leading to poly (ADP-ribose) polymerase cleavage. Taken together, these findings indicate that cordycepin induces apoptosis in AGS cells through regulation of multiple apoptotic pathways, including death receptor and mitochondria. Although further mechanical studies are needed, our results revealed that cordycepin can be regarded as a new effective and chemopreventive compound for human gastric cancer treatment.

Comparisons of Physicochemical Composition of Korean and Chinese Crataegi Fructrus (한국산 산사와 중국산 산사의 이화학적 성분 비교)

  • Lee, Jae-Joon;Lee, Hyun-Joo
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.569-576
    • /
    • 2012
  • This study was conducted to compare the major chemical components of Korea Crataegi fructrus (KCF) and Chinese Crataegi fructrus (CCF). Among the proximate compositions, the curde fat content of KCF was lower than that of CCF, whereas their crude protein, crude ash and carbohydrate contents were similar. CCF had a higher total free sugar content than KCF. The major free sugars of KCF and CCF were identified as fructose and glucose. The value of glutamic acid was greater in the amino acids of KCF and CCF, and KCF had higher total amino acids and essential amino acids contents than CCF. KCF also had a higher level unsaturated fatty acids than CCF. CCF had a higher organic acid content, but both KCF and CCF had high citric acid levels. and Chinese The vitamin C contents of KCF and CCF were 272.69 mg per 100 g and 262.38 mg per100 g, respectively. The mineral content of KCF was higher than that of CCF, in the following order : K > Ca > Mg > Fe. The results showed that KCF had higher total amino acid, essential amino acid, unsaturated fatty acid and mineral contents and CCF had higher free sugar and organic acid contents.