• 제목/요약/키워드: rhodamine-B

검색결과 230건 처리시간 0.032초

Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation

  • Gao, Xinghua;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.329-335
    • /
    • 2015
  • The effects of ion-doping on $TiO_2$ nanotubes were investigated to obtain the optimal catalyst for the effective decomposition of Rhodamine B (RB) through UV photocatalytic oxidation process. Changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the BET surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on RB removal increased when $Ag^+$, $Al^{3+}$ and $Zn^{2+}$ were doped into the $TiO_2$ nanotubes, whereas such activities decreased as a result of $Mn^{2+}$ or $Ni^{2+}$ doping. In the presence of $Zn^{2+}$-doped $TiO_2$ nanotubes calcined at $550^{\circ}C$, the removal efficiency of RB within 50 min was 98.7%.

A New Rhodamine B-coumarin Fluorochrome for Colorimetric Recognition of Cu2+ and Fluorescent Recognition of Fe3+ in Aqueous Media

  • Tang, Lijun;Li, Fangfang;Liu, Minghui;Nandhakumar, Raju
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3400-3404
    • /
    • 2011
  • A new rhodamine B-coumarin conjugate (1) capable of recognizing both $Cu^{2+}$ and $Fe^{3+}$ using two different detection modes have been designed and synthesized. The metal ion induced optical changes of 1 were investigated in $CH_3CN-H_2O$ (1:1, v/v, HEPES 50 mM, pH = 7.0) solution. Sensor 1 exhibits selective colorimetric recognition of $Cu^{2+}$ and fluorescent recognition of $Fe^{3+}$ with UV-vis and fluorescence spectroscopy, respectively. Moreover, both of the $Cu^{2+}$ and $Fe^{3+}$ recognition processes are observed to be barely interfered by other coexisting metal ions.

A New Rhodamine B Hydrazide Hydrazone Derivative for Colorimetric and Fluorescent "Off-On" Recognition of Copper(II) in Aqueous Media

  • Tang, Lijun;Guo, Jiaojiao;Wang, Nannan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.159-163
    • /
    • 2013
  • A new Rhodamine B hydrazide hydrazone 1 has been synthesized and investigated as a colorimetric and fluorescent "off-on" sensor for the recognition of $Cu^{2+}$ in $CH_3CN/H_2O$ (1:1, v/v, HEPES 10 mM, pH = 7.0) solution. Sensor 1 displayed highly selective, sensitive and rapid recognition behavior toward $Cu^{2+}$ among a range of biologically and environmentally important metal ions. Sensor 1 bind $Cu^{2+}$ via a 1:1 stoichiometry with an association constant of $1.92{\times}10^6\;M^{-1}$, and the detection limit is evaluated to be $7.96{\times}10^{-8}\;M$. The $Cu^{2+}$ recognition event is reversible and is barely interfered by other coexisting metal ions.

Turn-On Type Fluorogenic and Chromogenic Probe for the Detection of Trace Amount of Nitrite Ion in Water

  • Saleem, Muhammad;Abdullah, Razack;Hong, In Seok;Lee, Ki-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.389-393
    • /
    • 2013
  • A rhodamine B-based fluorescent probe for nitrite ion ($NO{_2}^-$) has been designed, synthesized, characterized and its properties for recognition of $NO{_2}^-$ were studied. Nearly non fluorescent probe upon reaction with nitrite ion significantly triggered the fluorescence. Fluorescence response is based on ring opening of the spirolactam of rhodamine B phenyl hydrazide showing maximum absorbance at 552 nm and maximum emission at 584 nm. Probe 3 exhibited high sensitivity and extreme selectivity for nitrite ion over other common ions and oxidants ($Cl^-$, $ClO^-$, $ClO{_2}^-$, $ClO{_3}^-$, $ClO{_4}^-$, $SO{_4}^{2-}$, $SiO{_3}^{2-}$, $NO{_3}^{2-}$, $CO{_3}^{2-}$) examined in methanol water (1:1, v/v) at pH 7.0. The probe might be a new efficient tool for detection of nitrite ion in natural water and biological system.

Boron-doped Diamond 전극을 이용한 Rhodamine B와 N, N-Dimethyl-4-nitrosoanilin의 전기화학적 분해에 반응표면분석법의 적용과 공정 최적화 (Application of the Response Surface Methodology and Process Optimization to the Electrochemical Degradation of Rhodamine B and N, N-Dimethyl-4-nitrosoanilin Using a Boron-doped Diamond Electrode)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제36권4호
    • /
    • pp.313-322
    • /
    • 2010
  • The aim of this research was to apply experimental design methodology to optimization of conditions of electrochemical oxidation of Rhodamine B (RhB) and N, N-Dimethyl-4-nitrosoaniline (RNO, indicative of the OH radical). The reactions of electrochemical oxidation of RhB degradation were mathematically described as a function of the parameters of current ($X_1$), NaCl dosage ($X_2$) and pH ($X_3$) and modeled by the use of the central composite design. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the removal efficiency of RhB and RNO and test variables in a coded unit: RhB removal efficiency (%) = $94.21+7.02X_1+10.94X_2-16.06X_3+3.70X_1X_3+9.05X_2X_3-{3.46X_1}^2-{4.67X_2}^2-{7.09X_3}^2$; RNO removal efficiency (%) = $54.78+13.33X_1+14.93X_2- 16.90X_3$. The model predictions agreed well with the experimentally observed result. Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the RhB degradation using canonical analysis was 100.0%(current, 0.80 A; NaCl dosage, 2.97% and pH 6.37).

고정화 $TiO_2$와 유동층 반응기를 이용한 Rhodamin B의 색도 제거

  • 박영식
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 가을 학술발표회 발표논문집
    • /
    • pp.295-299
    • /
    • 2003
  • 1. 고정화 $TiO_2$의 경우도 분말을 이용한 것과 같이 최적 광촉매 투입량이 나타났으며, 최적 투입량은 33.8 g/L이었고, 분말 $TiO_2$를 이용한 경우보다 빠른 초기반응속도를 보였으며, 최종반응시간도 빠른 것으로 나타났다. 2. 수용액에서 빠른 초기 제거속도의 1차적인 기작은 고정화 $TiO_2$ 표면으로의 흡착 때문이었으며, 빠른 흡착으로 인해 수용액 중의 RhB 농도가 빠르게 감소하여 광 투과율이 증가하므로 전체 반옹속도가 빠른 것으로 사료되었다. 3. 고정화 $TiO_2$를 이용한 유동층 반응기의 경우 최적 공기 공급량은 의한 Rhodamine B의 초기 제거속도는 분말보다 빠르지만 전체적인 제거시간은 흡착된 Rhodamine B의 분해 때문에 분말 $TiO_2$보다 느린 것으로 나타났다.

  • PDF

충전층 반응기와 고정화 TiO2/UV를 이용한 Rhodamine B의 광촉매 탈색 (Photocatalytic Decolorization of Dye Using Packed-bed Reactor and Immobilized TiO2/UV System)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제16권3호
    • /
    • pp.255-260
    • /
    • 2007
  • The photocatalytic decolorization of Rhodamine B (RhB) was studied using packed-bed reactor and immobilized $TiO_2/UV$ System. The 20 W UV-A, UV-B and UV-C lamps were employed as the light source. The effect of shape and surface polishing extent of reflector, distance between the reactor and reflector, reactor material were investigated. The results showed that the order of the initial reaction constant with reflector shape was round > polygon > W > rhombus. The optimum distance between the reactor and reflector was 2 cm. The initial reaction constant of quartz reactor was 1.46 times higher than that of tile PVDF reactor.

Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance

  • Ali, Asghar;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.205-210
    • /
    • 2017
  • In this study, we examined the photo-degradation efficiency of $CoSe_2$-Graphene-$TiO_2$ ($CoSe_2-G-TiO_2$) nanocomposites under visible light irradiation using rhodamine B (RhB) as standard dye. $CoSe_2-G-TiO_2$ nanocomposites were synthesized by ultrasonication and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic analysis and UV-Vis absorbance spectra analysis. Our results show that the $CoSe_2-G-TiO_2$ nanocomposite exhibited significant photo degradation efficiency compared to pure $TiO_2$ and $CoSe_2-G$, approximately 85.2% of the rhodamine (Rh B) degraded after 2.5 h. It is concluded that the $CoSe_2-G-TiO_2$ nanocomposite is a promising candidate for use in dye pollutants.

HPLC를 이용한 식품중 허용 외 색소의 동시분석에 관한 연구 (Development of a Simultaneous Analysis Method for Disapproved Coloring Agents in Foods Using HPLC)

  • 김천회;이민재;김경옥;이현영;양주홍;허석;박종석;장영미;김희연
    • 한국식품과학회지
    • /
    • 제40권4호
    • /
    • pp.375-381
    • /
    • 2008
  • 식품에 사용이 금지된 허용 외 색소 중 Orange II, Rhodamine B, Para red, Sudan I-IV 색소의 효율적인 수입식품 안전관리와 수용성 착색료 및 지용성 착색료로 이원화되어 있는 허용 외 착색료의 신속하고 정확한 분석을 위하여 동시 분석법을 개발하고자 하였다. 문헌조사를 바탕으로 분석을 위한 컬럼, 이동상 조건, 분석파장, 전처리 조건 등을 검토하여 분석법을 개발하였으며, 개발된 분석법의 검출한계 설정, 유효성 검증 및 회수율을 검토하였다. 26가지 제품에 대한 회수율 검토결과 Orange II는 96.46-121.26%, Rhodamine B는 70.86-106.53%, Para red는 97.00-116.86%, Sudan I은 92.93-112.44%, Sudan II는 96.63-115.10%, Sudan III는 92.21-114.73%, Sudan IV는 93.22-122.91%의 회수율을 나타냈다. 본 분석법 검량선의 상관계수는 0.999 이상을 보였으며 정밀성의 RSD는 0.8-1.39%로서 모두 2 이하의 값을 보였으며, 정확성은 90% 이상을 나타냈다. 이때, 검출한계 및 정량한계는 각각 0.1 mg/L, 0.3 mg/L로 결정하였다.

광전기촉매 공정과 전기/UV 공정을 이용한 Rhodamine B의 색 제거 (Decolorization of a Rhodamine B Using Photoelectrocatalytic and Electrolytic/UV Process)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.1023-1032
    • /
    • 2008
  • The feasibility study of the application of the photoelectrocatalytic and electrolytic/UV decolorization of Rhodamine B (RhB) was investigated in the photoelectrocatalytic and electrolytic/UV process with $TiO_2$ photoelectrode and DSA (dimensionally stable anode) electrode. Three types of $TiO_2$ photoelectrode were used. Thermal oxidation electrode (Th-$TiO_2$) was made by oxidation of titanium metal sheet; sol-gel electrode (5G-$TiO_2$) and powder electrode (P-$TiO_2$) were made by coating and then heating a layer of titania sol-gel and slurry $TiO_2$ on titanium sheet. DSA electrodes were Ti and Ru/Ti electrode. The relative performance for RhB decolorization of each of the photoelecoodes and DSA electrodes is: Ru/Ti > Ti > SG-$TiO_2$ > Th-$TiO_2$. It was observed that photoelectrocatalytic decolorization of RhB is similar to the sum of the photocatalytic and electrolytic decolorization. Therefore the synergetic effect was not showed in pthotoelectrocatalytic reaction. $Na_{2}SO_{4}$ and NaCl showed different decolorization effect between pthotoelectrocatalytic and electrolytic/UV reaction. In the presence of the NaCl, RhB decolorization of Ru/Ti DSA electrode was higher than that of the other photoelectrode and Ti electrode. Optimum current, NaCl dosage and UV lamp power of the electrolytic/UV process (using Ru/Ti electrode) were 0.75 A, 0.5 g/L and 16 W, respectively.