• Title/Summary/Keyword: rhizosphere pseudomonas bacteria

Search Result 68, Processing Time 0.023 seconds

Studies on Phytotoxin in Intensively Cultivated Upland Crops -II. Population and identification of soil microorganisms in rhizosphere of upland crops (연작재배지토양(連作栽培地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) -제(第) II 보(報). 작물근권토양(作物根圈土壤)의 미생물분포(微生物分布)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Suh, Jang-Sun;Kim, Young-Sig;Park, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.179-183
    • /
    • 1987
  • A series of laboratory experiments were conducted to find out the populations and identification of soil bacteria, fungi and their B/F ratio in the rhizosphere of intensively cultivatad hot-pepper, garlic, flower plants, chinese cabbage, and round onion. The results obtained are summarized as follows: 1. The number of bacteria, fungi and their B/F ratio are remarkably lower than that of normal paddy soils. 2. Nitrate reducers and bacteria which utilized simple sugars for their sole carbon source are predominated in the rhizosphere of intensively cultivated upland crops. 3. Alkaligenetic bacteria predominate in rhizosphere of garlic and tomato cultivated upland soils. 4. Genera of Pseudomonas, Xanthomonas, Bacillus, Arthrobacter, and Achromobacterium are the most common species in the rhizosphere of intensively cultivated upland crops and flower plants. 5. Phytotoxin producers such as Stachybotris sp. were identified in all rhizospheres of intensively cultivated upland crops and flower plants. 6. Most common and highest population of soil fungi were obtained for the genera of Penicillium, Humicola, Phoma and Aspergillus in the rhizosphere of intensively cultivated upland crops and flower plants.

  • PDF

Taxonomic and Functional Changes of Bacterial Communities in the Rhizosphere of Kimchi Cabbage After Seed Bacterization with Proteus vulgaris JBLS202

  • Bhattacharyya, Dipto;Duta, Swarnalee;Yu, Sang-Mi;Jeong, Sang Chul;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.286-296
    • /
    • 2018
  • Maintenance of a beneficial microbial community, especially in the rhizosphere, is indispensable for plant growth and agricultural sustainability. In this sense, plant growth-promoting rhizobacteria (PGPR) have been extensively studied for their role in plant growth promotion and disease resistance. However, the impact of introducing PGPR strains into rhizosphere microbial communities is still underexplored. We previously found that the Proteus vulgaris JBLS202 strain (JBLS202) promoted growth of Kimchi cabbage and altered the relative abundance of total bacteria and Pseudomonas spp. in the treated rhizosphere. To extend these findings, we used pyrosequencing to analyze the changes in bacterial communities in the rhizosphere of Kimchi cabbage after introduction of JBLS202. The alterations were also evaluated by taxon-specific realtime PCR (qPCR). The pyrosequencing data revealed an increase in total bacteria abundance, including specific groups such as Proteobacteria, Acidobacteria, and Actinobacteria, in the treated rhizosphere. Time-course qPCR analysis confirmed the increase in the abundance of Acidobacteria, Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. Furthermore, genes involved in nitrogen cycling were upregulated by JBLS202 treatment indicating changes in ecological function of the rhizosphere soil. Overall, these results indicate that introduction of JBLS202 alters both the composition and function of the rhizosphere bacterial community, which can have direct and indirect effects on plant growth. Therefore, we propose that long-term changes in bacterial composition and community-level function need to be considered for practical use of PGPRs.

Isolation and Identification of Phosphate Solubilizing Bacteria from Chinese Cabbage and Their Effect on Growth and Phosphorus Utilization of Plants

  • Poonguzhali, Selvaraj;Madhaiyan, Munusamy;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.773-777
    • /
    • 2008
  • Phosphate solubilizing bacteria (PSB) were isolated from the rhizosphere of Chinese cabbage and screened on the basis of their solubilization of inorganic tricalcium phosphate in liquid cultures. Ten strains that had higher solubilization potential were selected, and they also produced indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and siderophores. The strains were identified to be members of Pseudomonas, by 16S rDNA sequence analysis. Seed bacterization with PSB strains increased the root elongation and biomass of Chinese cabbage in seedling culture, although they had no effect on phosphorus uptake of plants. The plant growth promotion by PSB in this study could be due to the production of phytohormones or mechanisms other than phosphate solubilization, since they had no effect on P nutrition.

Control of Crisphead Lettuce Damping-off and Bottom Rot by Seed Coating with Alginate and Pseudomonas aeruginosa LY-11

  • Heo, Kwang-Ryool;Lee, Kwang-Youll;Lee, Sang-Hyun;Jung, Soon-Je;Lee, Seon-Woo;Moon, Byung-Ju
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Seedling damping-off and bottom rot caused by Rhizoctonia solani are yield limiting diseases of crisphead lettuce. To provide biocontrol measure in the management of the diseases, biocontrol strain Pseudomonas aeruginosa LY-11 was isolated from lettuce rhizosphere and introduced into crisphead lettuce rhizosphere by the seed coating delivery method. Alginate was used as a coating material to generate beads containing $10^6-10^{6.5}$ colony-forming units (CFUs) of viable bacterial cells of LY-11. When seeds germinated from the alginate beads containing the strain LY-11, the bacteria established mostly in plant rhizosphere to maintain at least $10^4$ CFU per gram of plant tissues. Crisphead lettuce seedlings germinated from the entrapped seeds were less affected from damping-off and bottom rot with disease control values of 70.4% and 85.4% respectively. Although P. aeruginosa LY-11 colonized plant rhizosphere and not phyllosphere, the result indicated that bottom rot caused by the foliar inoculation of R. solani was effectively reduced by the rhizobacteria. All data suggested that immobilized rhizobacterial application in seeds by alginate coating could control damping-off and induce induced systemic resistance of crisphead lettuce to reduce bottom rot.

Virulence Attenuation of Pectobacterium carotovorum Using N-Acyl-homoserine Lactone Degrading Bacteria Isolated from Potato Rhizosphere

  • Mahmoudi, Esmaeil;Tabatabaei, Badraldin Ebrahim Sayed;Venturi, Vittorio
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.242-248
    • /
    • 2011
  • Several soil bacteria were found to degrade N-Acylhomoserine lactones (NAHLs), thereby interfering with the bacterial quorum sensing system. In this research, fifteen strains of NAHL degrading rhizobacteria were isolated from potato rhizosphere. Based on phenotypic characteristics and 16S rDNA sequence analyses, the strains were identified as members of genera Bacillus, Streptomyces, Arthrobacter, Pseudomonas and Mesorhizobium. All tested isolates were capable to degrade both synthetic and natural NAHL produced by Pectobacterium carotovorum subsp. carotovorum (Pcc) strain EMPCC. In quorum quenching experiments selected isolates, especially Mesorhizobium sp., were markedly reduced the pathogenicity of Pcc strain EMPCC in potato tubers and totally suppressed tissue maceration on potato tubers. These led to consider the latter as a useful biocontrol agent against Pectobacterium spp.

Isolation and Characterization of Plant Growth-Promoting Bacteria for the Phytoremediation of Diesel- and Heavy Metal-Contaminated Soil

  • Yun-Yeong Lee;Kyung-Suk Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.484-499
    • /
    • 2023
  • Plant growth-promoting (PGP) bacteria can be used as bioresources to enhance phytoremediation through their PGP traits and pollutant removal capacity. In this study, 49 rhizobacteria were primarily isolated from the rhizosphere of tall fescue grown in diesel- and heavy metal-contaminated soil. Their biosurfactant production, phosphate (P) solubilization, and siderophore production were qualitatively and quantitatively evaluated to identify superior PGP bacteria. The optimal conditions for the growth of PGP bacteria and the stability of their PGP traits were a temperature of 35℃, a pH of 7, and 2 days of cultivation time. Four superior PGP bacteria (Pseudomonas sp. NL3, Bacillus sp. NL6, Bacillus sp. LBY14, and Priestia sp. TSY6) were finally selected. Pseudomonas sp. NL3 exhibited superior biosurfactant production and P solubilization. Bacillus sp. NL6 showed the highest P solubilization and superior production of biosurfactants and siderophores. Bacillus sp. LBY14 offered the best siderophore production and impressive P solubilization. Priestia sp. TSY6 had superior capacity for all three PGP traits. Through their secretion of beneficial PGP metabolites, the four bacteria isolated in this study have the potential for use in the phytoremediation of contaminated soil.

Characterization of PAH-Degrading Bacteria from Soils of Reed Rhizosphere in Sunchon Bay Using PAH Consortia (순천만 갈대근권 토양으로부터 얻은 PAH 분해세균의 특성 분석)

  • Kim Sung-Hyun;Kang Sung-Mi;Oh Kye-Heon;Kim Seung-Il;Yoon Byoung-Jun;Kahng Hyung-Yeel
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.208-215
    • /
    • 2005
  • This study was accomplished in order to collect fundamental data on microbial roles in recycling process of reed rhizosphere. Sunchon bay, which is considered as one of the marsh and mud environments severely affected by human activities such agriculture and fisheries, was selected as a model place. In our initial efforts, two bacterial consortia were obtained by enrichment culture using PAH mixtures containing anthracene, naphthalene, phenanthrene and pyrene as the sources of carbon and energy, and four pure bacteria capable of rapid degradation of PAH were isolated from them. Four strains designated as SCB1, SCB2, SCB6, and SCB7 revealed by morphological, physiological and molecular analyses were identified as Burkholderia anthina, Alcaligenes sp., Achromobacter xylosoxidans., and Pseudomonas putida, respectively with over $99{\%}$ confidence. Notably, Burkholderia anthina SCB1 and Alcaligenes sp. SCB2 were found to utilize anthracene and pyrene more quickly than naphthalene and phenanthrene, whereas Achromobacter xylosoxidans SCB6 and Pseudomonas putida SCB7 exhibited similar growth and degradation patterns except for pyrene. These facts suggest that the rhizosphere microorganisms capable of PAH degradation might be used to clean up the contamination sites with polycyclic aromatic hydrocarbons.

Ecological relationship between soil-borne plant pathogens and rhizosphere microorganisms. I. Effects of Pseudomonas putida on the suppression of microconidia and chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum (토양전염성 식물병원균과 근권미생물의 생태학적인 관계 I. Pseudomonas putida에 의한 오이덩굴쪼김병균(Fusarium oxysporum f. sp. cucumerinum)의 생장억제에 관하여)

  • Park Chang-Seuk;Choi Jin-Sik
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.186-192
    • /
    • 1983
  • The growth of germ tube of Fusarium oxysporum f. sp. cucumerinum was remarkably inhibited on the water agar treated with 100ppm of Fe-EDDHA, a synthetic iron chelating agent, whereas germination rate of microconidia did not show much differences compare with that of non treated water agar. Both of the germination and the germ tube elongation of microconidia were suppressed significantly in King's B agar by the bacterial siderophores produced by Pseudomonas putida. The highest germination of the chlamydospores was obtained in the soil added with $0.25\%$ of glucose plus $0.05\%$ of asparagine. The chlamydospores of cucumber wil fungus germinated about $14\%$ in rhizosphere soil of 2 day-old cucumber seedlings within 48 hours, and the germination was enhanced notably in rhizosphere soil of 10 day-old seedling. But the rates of germination was not increased according to cucumber growth age after 10 day-old seedling. The effect of P. putida and Fe-EDDHA on the germination on chlamydospores in conducive soil was not pronounced in the non-rhizosphere soil added with nutrient. However, the germination was suppressed significantly both in rhizosphere soil and in rhizosphere soil added with nutrient. The suppression of chlamydospore germination was greater in the bacteria inoculated soil than that in Fe-EDDHA treated soil.

  • PDF

Associated Nitrogen Fixation in the Rhizosphere of Rice in Saline and Reclaimed Saline Paddy Soil -1. Enumeration of aerobic heterotrophic bacteria associated in histosphere of grasses and rice (간척지토양(干拓地土壤)의 수도근권(水稻根圈)에서 협생질소고정(協生窒素固定)에 관(關)한 연구(硏究) -제(第)1보(報) 수도(水稻) 및 자연생잡초(自然生雜草) 근조직내(根組織內) 협생질소고정균(協生窒素固定菌)의 분리동정(分離同定))

  • Lee, Sang Kyu;Suh, Jang Sun;Ko, Jae Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 1987
  • The aerobic heterotrophic bacteria in the histosphere associated with grasses (Gramineae, Caryphyllaceae, Crucifereae) and rice cultivars in saline and reclaimed saline paddy soils were varied with species and rice cultivars. The fraction of aerobic heterotrophic $N_2$-fixing bacteria to the total aerobic heterotrophic bacteria were averaged to eighteen percent in the histosphere of grasses and rice. Acetylene reducing activity of these bacteria were ranged from 1 to 24 n mole/tube/hr. Most of the bacteria strains were predominated of hydrogen utilizing bacteria. The majority of these bacteria were closed to Pseudomonas, Azospirillum, Klebsiella and Agrobacter.

  • PDF

Reduction of Dissolved Fe(III) by As(V)-tolerant Bacteria Isolated from Rhizosphere Soil

  • Khanal, Anamika;Song, Yoonjin;Cho, Ahyeon;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.67-72
    • /
    • 2021
  • BACKGROUND: Biological iron redox transformation alters iron minerals, which may act as effective adsorbents for arsenate [As(V)] in the environments. In the viewpoint of alleviating arsenate, microbial Fe(III) reduction was sought under high concentration of As(V). In this study, Fe(III)-reducing bacteria were isolated from the wild plant rhizosphere soils collected at abandoned mine areas, which showed tolerance to high concentration of As(V), in pursuit of potential agents for As(V) bioremediation. METHODS AND RESULTS: Bacterial isolation was performed by a series of enrichment, transfer, and dilutions. Among the isolated strains, two strains (JSAR-1 and JSAR-3) with abilities of tolerance to 10 mM As(V) and Fe(III) reduction were selected. Phylogenetic analysis using 16S rRNA genesequences indicated the closest members of Pseudomonas stutzeri DSM 5190 and Paenibacillus selenii W126, respectively for JSAR-1 and JSAR-3. Ferric and ferrous iron concentrations were measured by ferrozine assay, and arsenic concentration was analyzed by ICP-AES, suggesting inability of As(V) reduction whereas ability of Fe(III) reduction. CONCLUSION: Fe(III)-reducing bacteria isolated from the enrichments with arsenate and ferric iron were found to be resistant to a high concentration of As(III) at 10 mM. We suppose that those kinds of microorganisms may suggest good application potentials for As(V) bioremediation, since the bacteria can transform Fe while surviving under As-contaminated environments. The isolated Fe(III)-reducing bacterial strains could contribute to transformations of iron minerals which may act as effective adsorbents for arsenate, and therefore contribute to As(V) immobilization