DOI QR코드

DOI QR Code

Virulence Attenuation of Pectobacterium carotovorum Using N-Acyl-homoserine Lactone Degrading Bacteria Isolated from Potato Rhizosphere

  • Received : 2011.01.25
  • Accepted : 2011.07.24
  • Published : 2011.09.01

Abstract

Several soil bacteria were found to degrade N-Acylhomoserine lactones (NAHLs), thereby interfering with the bacterial quorum sensing system. In this research, fifteen strains of NAHL degrading rhizobacteria were isolated from potato rhizosphere. Based on phenotypic characteristics and 16S rDNA sequence analyses, the strains were identified as members of genera Bacillus, Streptomyces, Arthrobacter, Pseudomonas and Mesorhizobium. All tested isolates were capable to degrade both synthetic and natural NAHL produced by Pectobacterium carotovorum subsp. carotovorum (Pcc) strain EMPCC. In quorum quenching experiments selected isolates, especially Mesorhizobium sp., were markedly reduced the pathogenicity of Pcc strain EMPCC in potato tubers and totally suppressed tissue maceration on potato tubers. These led to consider the latter as a useful biocontrol agent against Pectobacterium spp.

Keywords

References

  1. Angelo-Picard, C., Faure, D., Carlier, A., Uroz, S., Raffoux, A., Fray, R. and Dessaux, Y. 2004. Dynamics of bacterial populations in the rhizosphere of tobacco plants producing - or not - the quorum sensing signals hexanoyl- and 3-oxohexanoylhomoserine lactone. FEMS Microbiol. Ecol. 51:19-29. https://doi.org/10.1016/j.femsec.2004.07.008
  2. Angelo-Picard, C., Faure, D., Penot, I. and Dessaux, Y. 2005. Diversity of N-acyl homoserine lactone-producing and - degrading bacteria in soil and tobacco rhizosphere. Environ. Microbiol. 7:1796-1808. https://doi.org/10.1111/j.1462-2920.2005.00886.x
  3. Bruce, K. D., Hiorns, W. D., Hobman, J. L., Osborn, A. M., Strike, P. and Ritchie, D. A. 1992. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl. Environ. Microbiol. 58:3413-3416.
  4. Chilton, M., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P. and Nester, E. W. 1974. Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc. Natl. Acad. Sci. USA 71:3672-3676. https://doi.org/10.1073/pnas.71.9.3672
  5. Dong, Y. H., Wang, L. Y. and Zhang, L. H. 2007. Quorumquenching microbial infections: mechanisms and implications. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362:1201-1211. https://doi.org/10.1098/rstb.2007.2045
  6. Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L. and Zhang, L. H. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68:1754-1759. https://doi.org/10.1128/AEM.68.4.1754-1759.2002
  7. Dong, Y. H., Xu, J. L., Li, X. Z. and Zhang, L. H. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorumsensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. 97:3526-3531. https://doi.org/10.1073/pnas.060023897
  8. Faure, D. and Dessaux, Y. 2007. Novel biocontrol strategies directed at Pectobacterium carotovorum. Eur. J. Plant Pathol. 119:353-365. https://doi.org/10.1007/s10658-007-9149-1
  9. Flagan, S., Ching, W. K. and Leadbetter, J. R. 2003. Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl. Environ. Microbiol. 69:909-916. https://doi.org/10.1128/AEM.69.2.909-916.2003
  10. Funami, J., Yoshikane, Y., Kobayashi, H., Yokochi, N., Yuan, B., Iwasaki, K., Ohnishi, K. and Yagi, T. 2005. 4-Pyridoxolactonase from a symbiotic nitrogen-fixing bacterium Mesorhizobium loti: Cloning, expression, and characterization. Bioch. Biophysic. Act. 1753:234-239. https://doi.org/10.1016/j.bbapap.2005.08.026
  11. Fuqua, W. C., Winans, S. C. and Greenberg, E. P. 1994. Quorum sensing in bacteria: The LuxR/LuxI family of cell densityresponsive transcriptional regulators. J. Bacteriol. 176:269-275. https://doi.org/10.1128/jb.176.2.269-275.1994
  12. Huang, J. J., Han, J. I., Zhang, L. H. and Leadbetter, J. R. 2003. Utilization of acyl-homoserine lactone quorum signals for growth by a soil Pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69:5941-5949. https://doi.org/10.1128/AEM.69.10.5941-5949.2003
  13. Jafra, S., Przysowa, J., Czajkowski, R., Michta, A., Garbeva, P. and Vander Wolf, J. M. 2006. Detection and characterization of bacteria from the potato rhizosphere degrading N-acylhomoserine lactone. Can. J. Microbiol. 52:1006-1015. https://doi.org/10.1139/w06-062
  14. Leadbetter, J. R. and Greenberg, E. P. 2000. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182:6921-6926. https://doi.org/10.1128/JB.182.24.6921-6926.2000
  15. Lee, S. J., Park, S. Y., Lee, J. J., Yum, D. Y., Koo, B. T. and Lee, J. K. 2002. Genes encoding the N-acyl homoserine lactone degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68:3919-3924. https://doi.org/10.1128/AEM.68.8.3919-3924.2002
  16. Lin, Y. H., Xu, J. L., Hu, J., Wang, L. H., Ong, S. L., Leadbetter, J. R. and Zhang, L. H. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47: 849-860. https://doi.org/10.1046/j.1365-2958.2003.03351.x
  17. Lojkowska, E., Masclaux, C., Boccara, M., Robert-Baudouy, J. and Cotte-Pattat, H. N. 1995. Characterization of the pell gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937. Mol. Microbiol. 16:1183-1195. https://doi.org/10.1111/j.1365-2958.1995.tb02341.x
  18. Manzano, M., Cocolin, L., Cantoni, C. and Comi, G. 2003. Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides differentiation using a PCR-RE technique. Int. J. Food Microbiol. 81:249-254. https://doi.org/10.1016/S0168-1605(02)00222-2
  19. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Dayykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S. A. B. and Williams, P. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143:3703-3711. https://doi.org/10.1099/00221287-143-12-3703
  20. Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165-199. https://doi.org/10.1146/annurev.micro.55.1.165
  21. Molina, L., Constantinescu, F., Michel, L., Reimmann, C., Duffy, B. and Défago, G. 2003. Degradation of pathogen quorumsensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol. Ecol. 1522: 1-11.
  22. Morohoshi, T., Someya N. and Ikeda, T. 2009. Novel N-Acylhomoserin lactone- degrading bacteria isolate from the leaf surface of Solanum tuberosum and their quorum quenching properties. Biosci. Biotechnol. Biochem. 73:2124-2127. https://doi.org/10.1271/bbb.90283
  23. Park, S. Y., Kang, H. O., Jang, H. S., Lee, J. K., Koo, B. T. and Yum, D. Y. 2005. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl. Environ. Microbiol. 71:2632-2641. https://doi.org/10.1128/AEM.71.5.2632-2641.2005
  24. Park, S. Y., Lee, S. J., Oh, T. K., Oh, J. W., Koo, B. T., Yum, D. Y., and Lee, J. K. 2003. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp. and predicted homologues in other bacteria. Microbiology 149:1541-1550. https://doi.org/10.1099/mic.0.26269-0
  25. Rasmussen, T. B. and Givskov, M. 2006. Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895-904. https://doi.org/10.1099/mic.0.28601-0
  26. Reimmann, C., Ginet, N., Michel, L., Keel, C., Michaux, P., Krishnapillai, V., Zala, M., Heurlier, k., Triandafillu, K., Harms, H., Defago, G. and Hass, D. 2002. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923-932. https://doi.org/10.1099/00221287-148-4-923
  27. Sambrook, J., Fritsch, E. F. and Maniatis, T. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 476 pp.
  28. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of plant pathogenic bacteria. APS Press. St. Paul., Minnesota, USA. 373 pp.
  29. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr, Rinehart, K. L. and Farrand, S. K. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin layer chromatography. Biochem. J. 94:6036-6041.
  30. Sperandio, V. 2007. Novel approaches to bacterial infection therapy by interfering with bacteriato to bacteria signaling. Expert Rev. AntiInfect. Therapy 5:271-276. https://doi.org/10.1586/14787210.5.2.271
  31. Uroz, S., d'Angelo-Picard, C., Carlier, A., Elasri, A., Sicot, C., Petit, A., Oger, P., Faure, D. and Dessaux, Y. 2003. Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plantpathogenic bacteria. Microbiology (Reading, U.K.), 149:1981-1989. https://doi.org/10.1099/mic.0.26375-0
  32. Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J. and Salmond, G. P. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25:365-404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
  33. Yates, E. A., Philipp, B., Buckley, C., Atkinson, S., Chhabra, S. R., Sockett, R. E., Goldner, M., Dessaux, Y., Camara, M., Smith, H. and Williams, P. 2002. N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70: 5635-5646. https://doi.org/10.1128/IAI.70.10.5635-5646.2002

Cited by

  1. Pathogen Variation and Urea Influence Selection and Success of Streptomyces Mixtures in Biological Control vol.103, pp.1, 2013, https://doi.org/10.1094/PHYTO-06-12-0129-R
  2. AiiA lactonase disrupts N-acylhomoserine lactone and attenuates quorum-sensing-related virulence in Pectobacterium carotovorum EMPCC vol.63, pp.2, 2013, https://doi.org/10.1007/s13213-012-0521-9
  3. Attenuation and quantitation of virulence gene expression in quorum-quenched Dickeya chrysanthemi vol.199, pp.1, 2017, https://doi.org/10.1007/s00203-016-1276-7
  4. A comparative study on effect of two differentaiiAgenes on pathogenicity factors ofDickeya chrysanthemipv.chrysanthemi vol.46, pp.12, 2013, https://doi.org/10.1080/03235408.2013.769723
  5. Streptomyces competition and co-evolution in relation to plant disease suppression vol.163, pp.8, 2012, https://doi.org/10.1016/j.resmic.2012.07.005
  6. Purification of antibiotics from the biocontrol agent Streptomyces anulatus S37 by centrifugal partition chromatography vol.944, 2014, https://doi.org/10.1016/j.jchromb.2013.11.008
  7. Anti-quorum Sensing Effetcs of Ethanolic Crude Extract ofAnethum graveolensL. vol.18, pp.3, 2015, https://doi.org/10.1080/0972060X.2014.998718
  8. Taxonomy, Physiology, and Natural Products of Actinobacteria vol.80, pp.1, 2016, https://doi.org/10.1128/MMBR.00019-15
  9. Biological Control of Potato Common Scab With Rare Isatropolone C Compound Produced by Plant Growth Promoting Streptomyces A1RT vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01126