• Title/Summary/Keyword: rheo-strength

Search Result 10, Processing Time 0.031 seconds

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

Development of a High Strength Al-Si-Mg Alloy for Rheo-diecasting (레오다이캐스팅을 위한 고강도 Al-Si-Mg 합금설계)

  • Park, Kyu-Sup;Jang, Young-Soo;Choi, Byoung-Hee;Kang, Byung-Kuen;Kim, Hae-Soo;Choi, Sang-Ho;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • Recently, development of Al-based alloys for high mechanical performance has been an important issue in automotive industry. The present study focused on the design of a high strength Al-based alloy for rheo-diecasting. The research was based on thermodynamic calculation and experimentals to optimize the alloy compositions. Two important considerations were carried out: i) to obtain uniform slurry with fine and globular microstructures for rheo-diecasting, ii) to be strengthend by T6 heat treatment. In order to evaluate the effect of Si content on the slurry microstructure and castability, thermodynamic calculation and fluidity test were carried out. The effects of various alloying components, such as Mg, Cu and Zn, on age hardenability were also investigated. The mechanical properties of the rheo-diecasting products using the newly developed alloy are 324MPa in tensile strength, 289MPa in yield strength, and 11.2% in elongation after T6 heat treatment.

Numerical and Experimental Study of Semi-solid A356 Aluminum Alloy in Rheo-Forging process

  • Kim, H.H.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D. Samples of metal parts were subsequently fabricated by using hydraulic press machinery.

  • PDF

Effects on extrusion ratio and temperature of shore fiber reinforcd metal matrix composites by rheo-compocating (반용융 가공법에 의한 단섬유 보강 급속복합재료의 강도에 미치는 압출비와 압출온도의 영향)

  • 윤한기;김석호;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.18-27
    • /
    • 1997
  • Al 6061 alloy reinforced with 10 vol.% ${\delta}-Al_2O_3$ short fiber was fabricated by Rheo-compocasting and squwwze cating. Extrusion processings were performed at temperatures from 40$0^{\circ}C$ to 55$0^{\circ}C$ with various extrusion ratio for curved shape dies. In proportion to the increase of extrusion ratios and temperatures, ultimate tensile strength for extruded materials improved. SEM observation of fractured surfsce was capcble oof accounting for fracture mechanism and bounding state of fiber and matrix.

  • PDF

Microstructures and Mechanical Properties of SiCp/ Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Extrusion (Rheo-compocasting 및 열간압출에 의하여 제조한 Al-Si-Mg / SiC 입자강화 복합재료의 조직 및 기계적 특성)

  • Lee, Hag-Ju;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.335-345
    • /
    • 1992
  • Aluminum alloy matrix composites reinforced with various amounts of SiC particles have been produced by rheo-compocasting followed by hot extrusion. A relatively uniform distribution of SiC particles in the composites was obtained. The amounts of pore and SiC particles cluster were relatively small in the composites. Particle free zones were observed in the hot extruded composites when the amount of SiC particles was less than 20 vol%. However, the width of particle free zone decreases with the increase of SiC particle content. Eutectic Si phase play an important role for improving bonding between SiC particle and matrix. Tensile and yield strength increased with the increase of SiC particle content. the strenthening effect of SiC particle addition was effective even at relatively high temperature of 573 K.

  • PDF

Characteristic Strength of $\delta$-Al$_2$O$_3$/Aluminum Composite by Rheo-compocasting (반용융 가공법에 의한 $\delta$-Al$_2$O$_3$/Aluminum 복합재료의 강도 특성)

  • 이상필;김만수;김석호;윤한기
    • Proceedings of the KWS Conference
    • /
    • 1995.04a
    • /
    • pp.155-159
    • /
    • 1995
  • A16061 alloy reinforced with 10 vol% $\delta$-A1$_2$O$_3$ short fiber have been fabricated by Rheo-compocasting and squeeze casting and extruded at high temperature using conical shape die and curved shape die with various extrusion ratios.. Tensile and hardness tests were carried out to examine mechanical properties of extruded materials and SEM observation of fractured surface was capable of accounting for fracture mechanism and bonding state of fiber and matrix.

  • PDF

Indices for Quality Evaluation by Physicochemical and Chemoenzymatic Method in Red seabream, Pagrus major (물리 및 효소화학적 방법에 의한 참돔, Pagrus major의 품질판정 지표 설정)

  • 심길보;배진한;정호진;여해경;김태진;조영제
    • Journal of Aquaculture
    • /
    • v.17 no.3
    • /
    • pp.228-232
    • /
    • 2004
  • This study evaluates red seabream quality using physicochemical and chemoenzymatic indices. Breaking strength was correlated with moisture content and lipid content of red seabram by a precedent experiment. Moisture content (X$_1$), lipid content (X$_2$) and breaking strength (Y) were optimized with multiple regression as, Y= -2.53539+0.05544X$_1$-0.00161X$_2$. To test the equation, red seabream (n=13) were randomly purchased and measured moisture content, lipid content and breaking strength. The calculated breaking strength using the equation was similar to breaking strength measured using Rheo meter. Adenylate energy charge (AEC), a general biochemical index of stress, values of all sample were higher than 0.8 expect two fish. Fish's condition was a good. The equation developed in this study predicts breaking strength with moisture and lipid content measured. Moreover the equation may be used in grading cultured red seabream with calculated breaking strength. Grade according to breaking strength, when it came to over 1.4 kg, was measured as high grade; when it came to below 1.2 kg, was measured as low grade. Grade according to AEC, when it came to over 0.8, was measured as high grade.

Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure

  • Lu, Shulin;Yang, Xiong;Hao, Liangyan;Wu, Shusen;Fang, Xiaogang;Wang, Jing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1315-1326
    • /
    • 2018
  • In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheosqueeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and ${\alpha}-Mg$ matrix in $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to $4.3{\mu}m$. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine ${\alpha}-Mg$ matrix (${\alpha}1-Mg$ and ${\alpha}2-Mg$ grains) and LPSO structure.

Microstructure and Mechanical Property of A356 for Rheocasting Using 6-Pole Electromagnetic Stirring Casting Process (6극 전자석 전자교반 레오캐스팅에 따른 A356의 조직적 / 기계적 영향분석)

  • Kim, Baek-Gyu;Roh, Jung-Suk;Bang, Hee-Jae;Heo, Min;Park, Jin-Ha;Jeon, Chung-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.61-65
    • /
    • 2020
  • Rheo-diecasting with stirring has been used in many material industries. As the 4th Industrial Revolution approaches the world, eco-friendly high-strength and light-weight materials become more important. Casting methods have been studied and used for aluminum-alloy automobile parts. This study carried out the effect analysis of the micro-structure and mechanical properties, such as yield/ultimate tensile strength, elongation, and hardness, of A356 using the 6-pole EMS (electro-magnetic stirring) casting process with a high electromagnetic force. As a result, the hardness and elongation of the A356 after T6 heat-treatment show a significant improvement, respectively, by 20% and 50%.

Evaluation of Age-Hardening Characteristics of Rheo-Cast A356 Alloy by Nano/Micro Hardness Measurement (나노/마이크로 경도 측정에 의한 레오캐스트 A356 합금의 시효경화특성 평가)

  • Cho S. H.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.471-474
    • /
    • 2005
  • This study investigates the nano/microstructure, the aging response, and the mechanical/tribological properties of the eutectic regions in rheoformed A356 alloy-T5 parts using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. The aging responses of the eutectic regions in the rheoformed A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Victors hardness $(H_v)$ and indentation $(H_{IT})$ test results showed a similar trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found.

  • PDF