Browse > Article
http://dx.doi.org/10.1007/s12540-018-0125-4

Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure  

Lu, Shulin (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology)
Yang, Xiong (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology)
Hao, Liangyan (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology)
Wu, Shusen (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology)
Fang, Xiaogang (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology)
Wang, Jing (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology)
Publication Information
Metals and materials international / v.24, no.6, 2018 , pp. 1315-1326 More about this Journal
Abstract
In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheosqueeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and ${\alpha}-Mg$ matrix in $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to $4.3{\mu}m$. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine ${\alpha}-Mg$ matrix (${\alpha}1-Mg$ and ${\alpha}2-Mg$ grains) and LPSO structure.
Keywords
Alloy; Ultrasonic vibration; Semisolid processing; Microstructure; Mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Okamoto, Phase Diagrams of Dilute Binary Alloys (Materials Park, ASM International, 2002), p. 170
2 Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31, 2895 (2000)   DOI
3 Z. Zhu, S. Wu, S. Lü, W. Dai, L. Wan, L. Liu, Chin. J. Nonferrous Met. 21, 325 (2011)
4 Y. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 58, 2936 (2010)   DOI
5 S. Wu, X. Wu, Z. Hui, Acta Mater. 52, 3519 (2004)   DOI
6 H. Hu, J. Mater. Sci. 33, 1579 (1998)   DOI
7 T.M. Yue, G.A. Chadwick, J. Mater. Process. Technol. 58, 302 (1996)   DOI
8 J.H. Lee, H.S. Kim, C.W. Won, B. Cantor, Mater. Sci. Eng., A 338, 182 (2002)
9 A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike, J. Mater. Res. 16, 1894 (2001)   DOI
10 M. Ishida, S. Yoshioka, T. Yamamoto, K. Yasuda, S. Matsumura, Microscopy 63, 25 (2014)
11 T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scr. Mater. 51, 107 (2004)   DOI
12 M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura, Acta Mater. 55, 6798 (2007)   DOI
13 K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58, 6282 (2010)   DOI
14 B. Chen, X. Li, C. Lu, D. Lin, Met. Mater. Int. 20, 489 (2014)   DOI
15 T. Ito, T. Inazawa, M. Yamasaki, Y. Kawamura, M. Hirohashi, Mater. Sci. Eng., A 560, 216 (2013)   DOI
16 X.W. Li, F.Y. Zheng, Y.J. Wu, L.M. Peng, Y. Zhang, D.L. Lin, W.J. Ding, Mater. Lett. 113, 206 (2013)   DOI
17 Q. Yang, B.L. Xiao, D. Wang, M.Y. Zheng, K. Wu, Z.Y. Ma, J. Alloy Compd. 581, 585 (2013)   DOI
18 G. Garces, M.A. Muñoz-Morris, D.G. Morris, P. Perez, P. Adeva, Mater. Sci. Eng., A 614, 96 (2014)
19 J. Zhang, C. Chen, Z. Que, W. Cheng, J. Xu, J. Kang, Mater. Sci. Eng., A 552, 81 (2012)
20 D. Li, J. Zhang, Z. Que, C. Xu, X. Niu, Mater. Lett. 109, 46 (2013)   DOI
21 X.H. Du, G.S. Duan, M. Hong, D.P. Wang, B.L. Wu, Y.D. Zhang, C. Esling, Mater. Lett. 122, 312 (2014)   DOI
22 S. Huang, J. Wang, F. Hou, Y. Li, F. Pan, Mater. Lett. 137, 143 (2014)   DOI
23 D. Gao, Z. Li, Q. Han, Q. Zhai, Mater. Sci. Eng., A 502, 2 (2009)
24 M. Khosro Aghayani, B. Niroumand, J. Alloy Compd. 509, 114 (2011)   DOI
25 K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, X.S. Hu, Mater. Sci. Eng., A 528, 7484 (2011)
26 X. Fang, S. Wu, S. Lü, J. Wang, X. Yang, Mater. Sci. Eng., A 679, 372 (2017)
27 W. Dai, S. Wu, S. Lu, C. Lin, Mater. Sci. Eng., A 538, 320 (2012)
28 S. Lu, S. Wu, L. Wan, P. An, Metall. Mater. Trans. A 44, 2735 (2013)   DOI
29 S. Lu, S. Wu, W. Dai, C. Lin, P. An, J. Mater. Proc. Technol. 212, 1281 (2012)   DOI
30 J.S. Zhang, W.B. Zhang, X.Q. Ruan, L.P. Bian, W.L. Cheng, H.X. Wang, C.X. Xu, Mater. Sci. Eng., A 560, 847 (2013)
31 C. Lin, S. Wu, S. Lü, P. An, L. Wan, J. Alloy Compd. 568, 42 (2013)   DOI
32 G. Cao, J. Kobliska, H. Konishi, X. Li, Metall. Mater. Trans. A 39, 880 (2008)   DOI
33 G.I. Eskin, Ultrasonic Treatment Of Light Alloy Melts, 2nd edn. (Gordon and Breach Science, Amsterdam, 1998), pp. 65-103
34 Z.K. Peng, X.M. Zhang, J.M. Chen, Y. Xiao, H. Jiang, Mater. Sci. Technol. 21, 722 (2005)   DOI