• Title/Summary/Keyword: rf-electrode

Search Result 418, Processing Time 0.028 seconds

Influence of Ag Thickness on Electrical and Optical Properties of AZO/Ag/AZO Multi-layer Thin Films by RF Magnetron Sputtering (RF magnetron sputter에 의해 제조된 AZO/Ag/AZO 다층박막의 Ag 두께가 전기적 광학적 특성에 미치는 영향)

  • An Jin-Hyung;Kang Tea-Won;Kim Dong-Won;Kim Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.9-12
    • /
    • 2006
  • Al-doped ZnO(AZO)/Ag/AZO multi-layer films deposited on PET substrate by RF magnetron sputtering have a much better electrical properties than Al-doped ZnO single-layer films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the optimum thickness of Ag layers was determined to be $112{\AA}$ for high optical transmittance and good electrical conductivity. With about $1800{\AA}$ thick AZO films, the multi-layer showed a high optical transmittance in the visible range of the spectrum. The electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. A high quality transparent electrode, having a resistance as low as $6\;W/{\square}$ and a high optical transmittance of 87% at 550 nm, was obtained by controlling Ag deposition parameters.

Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향)

  • Oh, Y.C.;Kim, J.S.;Cho, C.N.;Shin, C.G.;Song, M.J.;So, B.M.;Choi, W.S.;Kim, C.H.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.718-721
    • /
    • 2004
  • The $(Sr_{0.9}Ca_{0.1})TiO_3$(SCT) thin films are deposited on Pt-coated electrode$(Pt/TiN/SiO_2/Si)$ using RF sputtering method at various substrate temperature. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of $100\sim500[^{\circ}C]$. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of $-80\sim+190[^{\circ}C]$. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

  • PDF

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Selective etching of SiO2 using embedded RF pulsing in a dual-frequency capacitively coupled plasma system

  • Yeom, Won-Gyun;Jeon, Min-Hwan;Kim, Gyeong-Nam;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.136.2-136.2
    • /
    • 2015
  • 반도체 제조는 chip의 성능 향상 및 단가 하락을 위해 지속적으로 pattern size가 nano size로 감소해 왔고, capacitor 용량은 증가해 왔다. 이러한 현상은 contact hole의 aspect ratio를 지속적으로 증가시킨바, 그에 따라 최적의 HARC (high aspect ratio contact)을 확보하는 적합한 dry etch process가 필수적이다. 그러나 HARC dry etch process는 많은 critical plasma properties 에 의존하는 매우 복잡한 공정이다. 따라서, critical plasma properties를 적절히 조절하여 higher aspect ratio, higher etch selectivity, tighter critical dimension control, lower P2ID과 같은 plasma characteristics을 확보하는 것이 요구된다. 현재 critical plasma properties를 제어하기 위해 다양한 plasma etching 방법이 연구 되어왔다. 이 중 plasma를 낮은 kHz의 frequency에서 on/off 하는 pulsed plasma etching technique은 nanoscale semiconductor material의 etch 특성을 효과적으로 향상 시킬 수 있다. 따라서 본 실험에서는 dual-frequency capacitive coupled plasma (DF-CCP)을 사용하여 plasma operation 동안 duty ratio와 pulse frequency와 같은 pulse parameters를 적용하여 plasma의 특성을 각각 제어함으로써 etch selectivity와 uniformity를 향상 시키고자 하였다. Selective SiO2 contact etching을 위해 top electrode에는 60 MHz pulsed RF source power를, bottom electrode에는 2MHz pulse plasma를 인가하여 synchronously pulsed dual-frequency capacitive coupled plasma (DF-CCP)에서의 plasma 특성과 dual pulsed plasma의 sync. pulsing duty ratio의 영향에 따른 etching 특성 등을 연구 진행하였다. 또한 emissive probe를 통해 전자온도, OES를 통한 radical 분석으로 critical Plasma properties를 분석하였고 SEM을 통한 etch 특성분석과 XPS를 통한 표면분석도 함께 진행하였다. 그 결과 60%의 source duty percentage와 50%의 bias duty percentage에서 가장 향상된 etch 특성을 얻을 수 있었다.

  • PDF

Modeling of Two-dimensional Self-consistent RF Plasmas on Discharge Chamber Structures (전극 구조에 관한 2차원 RF 플라즈마의 모델링)

  • So, Soon-Youl;Lim, Jang-Seob;Kim, Chel-Woon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 2005
  • Plasma researches using parallel-plate electrodes are widely used in semiconductor application such as etching and thin film deposition. Therefore, a quantitative understanding and control of plasma behavior are becoming increasingly necessary because their important applications and simulation techniques have been actively carried out in order to solve such problems above. In this paper, we developed a two-dimensional(2D) self-consistent fluid model, because 2D models can deal with real reactor geometries. The fluid model is based on particle continuity equations for taking account of an electrode system in a cylindrical geometry. An pure Ar gas was used at 500[mTorr] and radio-frequency (13.56(MHz)). Four models were simulated under the different electrode geometries which have chamber widths of 5.25, 6.0, 8.0, and 10.0[cm] and we compared their results with each other. Plasma uniformity and a do self-bias voltage were also discussed.

Perioperative Temperature Changes Observed in Cases of Lumbar Sympathectomy Using RF Thermocoagulation (고주파열응고술을 이용한 요부교감신경절제술에서 수술기주위의 온도변화)

  • Jung, Bae-Hee;Shin, Keun-Man;Kim, Hyun-Ju;Lee, Kee-Heon;Kim, Tae-Sung;Hong, Soon-Yong;Choi, Young-Ryong
    • The Korean Journal of Pain
    • /
    • v.13 no.2
    • /
    • pp.196-201
    • /
    • 2000
  • Background: Currently, minimally invasive operations are preferred to open surgery whenever possible. Lumbar sympathectomy using RF (radiofrequency) thermocoagulation is both safe and minimally invasive. The problem with the technique is that it cannot be performed successfully in a significant number of cases. If the temperature change in the sole is monitored immediately after the procedure then it can be determined if the procedure needs to be repeated. Methods: A curved tip cannula, 150 mm long with a 10 mm active tip, was used for RF lumbar sympathectomy. The temperature of the soles of both the foot on the affected side and the foot on the control side was monitored immediately before the procedure, immediately after making the L2 lesion, immediately after making the L3 lesion and at 5, 10, and 15 minutes after the procedure. Results: No statistically significant difference was observed in the temperature of the two soles before making the lesions. In the 24 of the 27 patients, there were prominent differences in temperature between the two soles at 10 minutes after the procedures. 11 of the 24 patients showed a significant temperature change after the first trial. But the remaining 13 required a second lesion on L2 and L3. Conclusions: We judged the success of the operation in the operating room by monitoring the temperature difference in the soles of the feet. When no increase in the temperature difference is observed, we can move the electrode and make another lesion. With this procedure, we can drastically increase the success rate of the procedure.

  • PDF

Impact of Energy and Access Methods on Extrahepatic Tumor Spreading and the Ablation Zone: An Ex vivo Experiment Using a Subcapsular Tumor Model

  • Jin Sil Kim;Youngsun Ko;Hyeyoung Kwon;Minjeong Kim;Jeong Kyong Lee
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.580-588
    • /
    • 2019
  • Objective: To evaluate the impact of energy and access methods on extrahepatic tumor spreading and the ablation zone in an ex vivo subcapsular tumor mimic model with a risk of extrahepatic tumor spreading. Materials and Methods: Forty-two tumor-mimics were created in bovine liver blocks by injecting a mixture of iodine contrast material just below the liver capsule. Radiofrequency (RF) ablations were performed using an electrode placed parallel or perpendicular to hepatic surface through the tumor mimic with low- and high-power protocols (groups 1 and 2, respectively). Computed tomography (CT) scans were performed before and after ablation. The presence of contrast leak on the hepatic surface on CT, size of ablation zone, and timing of the first roll-off and popping sound were compared between the groups. Results: With parallel access, one contrast leak in group 1 (1/10, 10%) and nine in group 2 (9/10, 90%) (p < 0.001) were identified on post-ablation CT. With perpendicular access, six contrast leaks were identified in each group (6/11, 54.5%). The first roll-off and popping sound were significantly delayed in group 1 irrespective of the access method (p = 0.002). No statistical difference in the size of the ablation zone of the liver specimen was observed between the two groups (p = 0.247). Conclusion: Low-power RF ablation with parallel access is proposed to be effective and safe from extrahepatic tumor spreading in RF ablation of a solid hepatic tumor in the subcapsular location. Perpendicular placement of an electrode to the capsule is associated with a risk of extrahepatic tumor spreading regardless of the power applied.

The Structural and Electrical Properties of NiCr Alloy for the Bottom Electrode of High Dielectric(Ba,Sr)Ti O3(BST) Thin Films

  • Lee, Eung-Min;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • NiCr alloys are prepared onto poly-Si/ $SiO_2$/Si substrates to replace Pt bottom electrode with a new one for integration of high dielectric constant materials. Alloys deposited at Ni and Cr power of 40 and 40 W showed optimum properties in the composition of N $i_{1.6}$C $r_{1.0}$. The grain size of films increases with increasing deposition temperature. The films deposited at 50$0^{\circ}C$ showed a severe agglomeration due to homogeneous nucleation. The NiCr alloys from the rms roughness and resistivity data showed a thermal stability independent of increasing annealing temperature. The 80 nm thick BST films deposited onto N $i_{1.6}$C $r_{1.0}$/poly-Si showed a dielectric constant of 280 and a dissipation factor of about 5 % at 100 kHz. The leakage current density of as-deposited BST films was about 5$\times$10$^{-7}$ A/$\textrm{cm}^2$ at an applied voltage of 1 V. The NiCr alloys are possible to replace Pt bottom electrode with new one to integrate f3r high dielectric constant materials.terials.

Investigation of Spatial Distribution of Plasma Density between the Electrode and Lateral Wall of Narrow-gap CCP Source (좁은 간격 CCP 전원의 전극과 측면 벽 사이 플라즈마 분포)

  • Choi, Myung-Sun;Jang, Yunchang;Lee, Seok-Hwan;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.1-5
    • /
    • 2014
  • The plasma density distribution in between the electrode and lateral wall of a narrow gap CCP was investigated. The plasma density distribution was obtained using single Langmuir probe, having two peaks of density distribution at the center of electrode and at the peripheral area of electrodes. The plasma density distribution was compared with the RF fluctuation of plasma potential taken from capacitive probe. Ionization reactions obtained from numerical analysis using CFD-$ACE^+$ fluid model based code. The peaks in two region for plasma density and voltage fluctuation have similar spatial distribution according to input power. It was found that plasma density distribution between the electrode and the lateral wall is closely related with the local ionization.

Electrical Properties of SBT Capacitor with top electrodes (상부전극에 따른 SBT 커패시터의 전기적 특성)

  • Jo, Chun-Nam;O, Yong-Cheol;Kim, Jin-Sa;Sin, Cheol-Gi;Choe, Un-Sik;Kim, Chung-Hyeok;Park, Yong-Pil;Hong, Jin-Ung;Lee, Jun-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1499-1501
    • /
    • 2003
  • The A $Sr_{0.7}Bi_{2.6}Ta_2O_9$(SBT)thin films are deposited on Pt-coated electrode(Pt/$TiO_2/SiO_2$/Si) using RF magnetron sputtering method. The electrical properties of SBT capacitors with top electrodes were studied. In the XRD pattern, the SBT thin films in all annealing temperatures had (105) orientation. In the SEM images, Bi-layered perovskite phase was crystallized at $750^{\circ}C$ and grains largely grew in oxygen annealing atmosphere. The electrical properties of SBT capacitor with top electrodes represents a favorable properties in Pt electrode. The maxim urn remanent polarization and the coercive electric field with Pt electrode are $12.40C/cm^2$and 30kV/cm respectively. The dielectric constant and leakage current density with Pt electrode is 340 and $6.8110^{-10}A/cm^2$ respectively.

  • PDF