• 제목/요약/키워드: review text.

검색결과 591건 처리시간 0.03초

리뷰 텍스트 기반 감성 분석과 네트워크 분석에 관한 연구 (Sentiment Analysis and Network Analysis based on Review Text)

  • 김유미;허고은
    • 한국문헌정보학회지
    • /
    • 제55권3호
    • /
    • pp.397-417
    • /
    • 2021
  • 리뷰 텍스트는 이용자들의 경험과 의견이 구체적으로 담겨있어 이를 분석하면 리뷰 대상에 대한 많은 내용을 파악할 수 있다. 이에 따라 리뷰 텍스트에 대해 감성 분석을 진행하여 음식점의 각 요인에 대한 이용자의 평가 등을 파악하는 연구, 네트워크 분석을 통한 이용자들의 선호를 파악하는 연구들이 진행되어왔다. 본 연구에서는 음식점 리뷰 텍스트의 별점 기반 만족도가 높은 음식점과 낮은 음식점을 분석대상으로 선정하여 감성 분석과 네트워크 분석을 통합적으로 수행하였다. 서로 다른 두 집단의 리뷰 텍스트에서 나타나는 차이로 음식점의 특성을 파악하여 좋은 음식점의 기준과 음식점 만족도에 영향을 미치는 주요인을 확인하고자 하였다.

온라인 리뷰의 텍스트 마이닝에 기반한 한국방문 외국인 관광객의 문화적 특성 연구 (A study on cultural characteristics of foreign tourists visiting Korea based on text mining of online review)

  • 야오즈옌;김은미;홍태호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권4호
    • /
    • pp.171-191
    • /
    • 2020
  • Purpose The study aims to compare the online review writing behavior of users in China and the United States through text mining on online reviews' text content. In particular, existing studies have verified that there are differences in online reviews between different cultures. Therefore, the purpose of this study is to compare the differences between reviews written by Chinese and American tourists by analyzing text contents of online reviews based on cultural theory. Design/methodology/approach This study collected and analyzed online review data for hotels, targeting Chinese and US tourists who visited Korea. Then, we analyzed review data through text mining like sentiment analysis and topic modeling analysis method based on previous research analysis. Findings The results showed that Chinese tourists gave higher ratings and relatively less negative ratings than American tourists. And American tourists have more negative sentiments and emotions in writing online reviews than Chinese tourists. Also, through the analysis results using topic modeling, it was confirmed that Chinese tourists mentioned more topics about the hotel location, room, and price, while American tourists mentioned more topics about hotel service. American tourists also mention more topics about hotels than Chinese tourists, indicating that American tourists tend to provide more information through online reviews.

Multi-channel CNN 기반 온라인 리뷰 유용성 예측 모델 개발에 관한 연구 (A multi-channel CNN based online review helpfulness prediction model)

  • 이흠철;윤효림;이청용;김재경
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.171-189
    • /
    • 2022
  • 온라인 리뷰는 소비자의 구매 의사결정 과정에서 중요한 역할을 담당하고 있으므로 소비자에게 유용하고 신뢰성이 있는 리뷰를 제공하는 것이 중요하다. 기존의 온라인 리뷰 유용성 예측 관련 연구는 주로 온라인 리뷰의 텍스트와 평점 정보 간의 일관성을 바탕으로 리뷰 유용성을 예측하였다. 그러나 기존 연구는 평점 정보를 스칼라로 표현했기 때문에 표현 수용력이 제한적이거나 평점 정보와 리뷰 텍스트 정보와의 상호작용을 제한적으로 학습하는 한계가 존재한다. 본 연구에서는 기존 연구의 한계점을 보완하기 위해 리뷰 텍스트와 평점 정보 간의 상호작용을 효과적으로 학습할 수 있는 CNN-RHP(CNN based Review Helpfulness Prediction) 모델을 제안하였다. 먼저, 리뷰 텍스트의 의미론적 특성을 추출하기 위해 multi-channel CNN을 적용하였다. 다음으로, 평점 정보는 텍스트 특성과 동일한 차원을 나타내는 독립된 고차원 임베딩 특성 벡터로 변환하였다. 최종적으로 요소별(Element-wise) 연산을 통해 리뷰 텍스트와 평점 정보 간의 일관성을 학습하였다. 본 연구에서는 제안된 CNN-RHP 모델의 성능을 평가하기 위해 Amazom.com에서 수집된 온라인 소비자 리뷰를 사용하였다. 실험 결과, 본 연구에서 제안한 CNN-RHP 모델이 기존 연구에서 제안된 여러 모델과 비교했을 때 우수한 예측 성능을 나타내는 것을 확인하였다. 본 연구의 결과는 온라인 전자상거래 플랫폼에서 소비자들에게 리뷰 유용성 예측 서비스를 제공할 때 유의미한 시사점을 제공할 수 있다.

온라인 리뷰의 제목과 내용의 일치성이 리뷰 유용성에 미치는 영향 (The Effect of Text Consistency between the Review Title and Content on Review Helpfulness)

  • 이청용;김재경
    • 지식경영연구
    • /
    • 제23권3호
    • /
    • pp.193-212
    • /
    • 2022
  • 많은 연구에서 온라인 리뷰 유용성에 영향을 미치는 다양한 요인을 발견하였다. 기존 연구에서는 주로 온라인 리뷰와 관련되는 정량적(예: 평점) 및 정서적(예: 감성점수) 요인이 리뷰 유용성에 미치는 영향을 조사했다. 온라인 리뷰는 제목과 내용을 동시에 포함하고 있지만, 기존 연구는 주로 리뷰 내용에 중점을 두고 있다. 그러나 리뷰 제목을 고려하지 않고 단순히 리뷰 내용만을 고려하면 리뷰 유용성에 영향을 미치는 요인을 조사할 때 한계가 존재한다. 이에 따라 리뷰 제목과 내용을 모두 고려하는 연구가 주목받고 있지만, 대부분의 연구는 리뷰 유용성에 대한 리뷰 내용과 제목의 영향을 독립적으로 조사하였다. 이는 리뷰 제목과 내용 간의 일치성이 리뷰 유용성에 미치는 잠재적인 영향을 간과할 수 있다. 따라서 본 연구에서는 단순 노출 효과 이론을 통해 리뷰 제목과 내용 간의 텍스트 일치성이 리뷰 유용성에 미치는 영향을 확인하고, 정보 선명성, 리뷰 길이 및 정보원 신뢰성의 역할도 고려하였다. 분석 결과, 리뷰 제목과 내용 간의 텍스트 일치성은 리뷰 유용성에 부정적인 영향을 미치는 것을 확인하였다. 또한, 정보 선명성과 정보원 신뢰성은 리뷰 유용성에 대한 텍스트 일치성의 부정적인 영향을 완화한다는 것을 발견했다.

The Impact of Product Review Usefulness on the Digital Market Consumers Distribution

  • Seung-Yong LEE;Seung-wha (Andy) CHUNG;Sun-Ju PARK
    • 유통과학연구
    • /
    • 제22권3호
    • /
    • pp.113-124
    • /
    • 2024
  • Purpose: This study is a quantitative study and analyzes the effect of evaluating the extreme and usefulness of product reviews on sales performance by using text mining techniques based on product review big data. We investigate whether the perceived helpfulness of product reviews serves as a mediating factor in the impact of product review extremity on sales performance. Research design, data and methodology: The analysis emphasizes customer interaction factors associated with both product review helpfulness and sales performance. Out of the 8.26 million Amazon product reviews in the book category collected by He & McAuley (2016), text mining using natural language processing methodology was performed on 300,000 product reviews, and the hypothesis was verified through hierarchical regression analysis. Results: The extremity of product reviews exhibited a negative impact on the evaluation of helpfulness. And the helpfulness played a mediating role between the extremity of product reviews and sales performance. Conclusion: Increased inclusion of extreme content in the product review's text correlates with a diminished evaluation of helpfulness. The evaluation of helpfulness exerts a negative mediating effect on sales performance. This study offers empirical insights for digital market distributors and sellers, contributing to the research field related to product reviews based on review ratings.

Feature Analysis for Detecting Mobile Application Review Generated by AI-Based Language Model

  • Lee, Seung-Cheol;Jang, Yonghun;Park, Chang-Hyeon;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.650-664
    • /
    • 2022
  • Mobile applications can be easily downloaded and installed via markets. However, malware and malicious applications containing unwanted advertisements exist in these application markets. Therefore, smartphone users install applications with reference to the application review to avoid such malicious applications. An application review typically comprises contents for evaluation; however, a false review with a specific purpose can be included. Such false reviews are known as fake reviews, and they can be generated using artificial intelligence (AI)-based text-generating models. Recently, AI-based text-generating models have been developed rapidly and demonstrate high-quality generated texts. Herein, we analyze the features of fake reviews generated from Generative Pre-Training-2 (GPT-2), an AI-based text-generating model and create a model to detect those fake reviews. First, we collect a real human-written application review from Kaggle. Subsequently, we identify features of the fake review using natural language processing and statistical analysis. Next, we generate fake review detection models using five types of machine-learning models trained using identified features. In terms of the performances of the fake review detection models, we achieved average F1-scores of 0.738, 0.723, and 0.730 for the fake review, real review, and overall classifications, respectively.

과학문장 읽기를 통한 학생들의 과학적 이해 과정 분석 - 문헌 연구를 중심으로 - (Analysis of Processes in Students' Scientific Understanding Through Reading Scientific Texts -Focused on Literature Review-)

  • 박종원
    • 한국과학교육학회지
    • /
    • 제30권1호
    • /
    • pp.27-41
    • /
    • 2010
  • 과학문장은 과학적 이해를 위한 중요한 정보원이고 따라서 과학문장 읽기는 과학적 이해를 위해 중요한 학습활동 중의 하나이다. 그럼에도 불구하고 국내에서는 과학문장 읽기에 대한 연구가 거의 없었다. 이에 본 연구에서는 문헌 연구를 통해 6개(소항목 10개)로 구성된 과학문장의 구성요소와 5개 (소항목 18개)로 구성된 과학문장의 기능에 대한 종합적인 리스트를 제안하였다. 그리고 과학문장의 구조와 흥미, 친숙도, 비유 등이 과학문장 이해에 미치는 영향을 문헌 조사하여 종합 정리하였다. 본 연구는 과학문장 읽기에 대한 일련의 연구의 첫출발이다. 따라서 어떠한 후속연구가 진행되고 또 진행될 것인지도 함께 소개하였다.

Text Mining and Visualization of Papers Reviews Using R Language

  • Li, Jiapei;Shin, Seong Yoon;Lee, Hyun Chang
    • Journal of information and communication convergence engineering
    • /
    • 제15권3호
    • /
    • pp.170-174
    • /
    • 2017
  • Nowadays, people share and discuss scientific papers on social media such as the Web 2.0, big data, online forums, blogs, Twitter, Facebook and scholar community, etc. In addition to a variety of metrics such as numbers of citation, download, recommendation, etc., paper review text is also one of the effective resources for the study of scientific impact. The social media tools improve the research process: recording a series online scholarly behaviors. This paper aims to research the huge amount of paper reviews which have generated in the social media platforms to explore the implicit information about research papers. We implemented and shown the result of text mining on review texts using R language. And we found that Zika virus was the research hotspot and association research methods were widely used in 2016. We also mined the news review about one paper and derived the public opinion.

Using the PubAnnotation ecosystem to perform agile text mining on Genomics & Informatics: a tutorial review

  • Nam, Hee-Jo;Yamada, Ryota;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • 제18권2호
    • /
    • pp.13.1-13.6
    • /
    • 2020
  • The prototype version of the full-text corpus of Genomics & Informatics has recently been archived in a GitHub repository. The full-text publications of volumes 10 through 17 are also directly downloadable from PubMed Central (PMC) as XML files. During the Biomedical Linked Annotation Hackathon 6 (BLAH6), we experimented with converting, annotating, and updating 301 PMC full-text articles of Genomics & Informatics using PubAnnotation, a system that provides a convenient way to add PMC publications based on PMCID. Thus, this review aims to provide a tutorial overview of practicing the iterative task of named entity recognition with the PubAnnotation/PubDictionaries/TextAE ecosystem. We also describe developing a conversion tool between the Genia tagger output and the JSON format of PubAnnotation during the hackathon.

중고거래 어플리케이션 <당근마켓> 리뷰텍스트에 나타난 소비자의 인성 함축단어 텍스트마이닝 분석 (Analysis of Text Mining of Consumer's Personality Implication Words in Review of Used Transaction Application )

  • 정예린;주영애
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.1-10
    • /
    • 2021
  • 본 연구는 중고거래 어플리케이션 <당근마켓>의 리뷰텍스트에 나타난 소비자의 인성 함축단어의 사용실태를 분석하였다. 데이터 수집은 2021년 5월로부터 과거 6개월간 서울과 경기권을 대상으로 하였다. 이는 웹 크롤러를 개발하여 무작위 추출 총 1368건을 수집 후, 최종 570건을 전처리하여 사용하였다. 결과는 다음과 같다. 첫째, 제품의 상거래 플랫폼임에도 리뷰텍스트의 48.2%는 소비자의 인성 관련 내용이었다. 둘째, 리뷰 텍스트는 긍정적 반응이 주를 이루며 이는 감사라는 키워드를 기반으로 텍스트 네트워크 구조를 형성하였다. 셋째, 소비자 인성을 함축하는 리뷰 텍스트는 소비자의 '대타적 인성'과' 대내적 인성'으로 그룹화되었고, 이는 플랫폼에서 통합적으로 작용하였다. 결론적으로 인성 관련 요인들이 플랫폼 거래 과정의 상호작용에서 중요한 역할을 함을 확인하였고, 앞으로 플랫폼의 서비스 품질에도 소비자의 인성이 경쟁력으로 작용할 것이므로, 이에 대해 다각도에서 연구되어야 할 것임을 제언하였다.