• Title/Summary/Keyword: reverse-transcription-PCR

Search Result 915, Processing Time 0.029 seconds

Ethyl Acetate Fraction of Adenophora triphylla var. japonica Inhibits Migration of Lewis Lung Carcinoma Cells by Suppressing Macrophage Polarization toward an M2 Phenotype

  • Park, Shin-Hyung
    • Journal of Pharmacopuncture
    • /
    • v.22 no.4
    • /
    • pp.253-259
    • /
    • 2019
  • Objectives: It is reported that tumor-associated macrophages (TAMs) contribute to cancer progression by promoting tumor growth and metastasis. The purpose of this study is to investigate the effect of different fractions of Adenophora triphylla var. japonica (AT) on the polarization of macrophages into the M2 phenotype, a major phenotype of TAMs. Methods: We isolated hexane, ethyl acetate, and butanol fractions from crude ethanol extract of AT. The cytotoxicity of AT in RAW264.7 cells was examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RAW264.7 cells were polarized into the M2 phenotype by treatment with interleukin (IL)-4 and IL-13. The expression of M2 macrophage marker genes was detected by reverse transcription polymerase chain reaction (RT-PCR). The phosphorylation level of signal transducer and activator of transcription 6 (STAT6) was investigated by western blot analysis. The migration of Lewis lung carcinoma (LLC) cells was examined by transwell migration assay using conditioned media (CM) collected from RAW264.7 cells as a chemoattractant. Results: Among various fractions of AT, the ethyl acetate fraction of AT (EAT) showed the most significant suppressive effect on the mRNA expression of M2 macrophage markers, including arginase-1, interleukin (IL)-10 and mannose receptor C type 1 (MRC-1), up-regulated by treatment of IL-4 and IL-13. In addition, EAT suppressed the phosphorylation of STAT6, a critical regulator of IL-4 and IL-13-induced M2 macrophage polarization. Finally, the increased migration of Lewis lung carcinoma (LLC) cells by CM from M2-polarized RAW264.7 cells was reduced by CM from RAW264.7 cells co-treated with EAT and M2 polarization inducers. Conclusion: We demonstrated that EAT attenuated cancer cell migration through suppression of macrophage polarization toward the M2 phenotype. Additional preclinical or clinical researches are needed to evaluate its regulatory effects on macrophage polarization and anti-cancer activities.

Effects of Agastachis Herba Extract and Lysimachiae Herba Extract on the Experimental Cellular Model of NFLDs Induced by Palmitic Acid (곽향과 금전초 추출물이 Palmitic acid로 유발된 비알코올성 지방간 세포 모델에 미치는 영향)

  • Lee, Hye-in;Kim, Young-kwang;Lim, Hyeon-chan;Lee, Da-eun;Kim, Eun-ji;Moon, Young-ho
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.3
    • /
    • pp.302-312
    • /
    • 2018
  • Objectives: This study was performed to investigate the effects of two herbal medicines, Agastachis Herba and Lysimachiae Herba, on a cellular model of non-alcoholic fatty liver diseases (NFLDs). Methods: HepG2 cells were treated with palmitic acid and with various concentrations of Agastachis Herba (AH) or Lysimachiae Herba (LH) extract in water. The lipotoxicity was assessed using EZ-cytox, and the lipoapoptosis was assessed using cell death detection ELISA. Intracellular lipids were measured by oil red O staining. The efficacy of AH and LH on sterol regulatory element-binding transcription factor-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) in HepG2 cells was measured by reverse transcription polymerase chain reaction (RT-PCR). Results: Both AH and LH extracts increased lipoapoptosis and decreased lipotoxicity and levels of SREBP-1c, ACC, and FAS (SREBP-1c, ACC, and FAS are factors in lipid synthesis). In the oil red O staining experiment, both extracts also reduced intracellular lipid accumulation; in this instance, LH's efficacy was superior to that of AH. Conclusions: According to the results, both AH and LH are likely to contribute to non-alcoholic fatty liver disease, as both interfere with lipid synthesis.

Integrin-linked Kinase Functions as a Tumor Promoter in Bladder Transitional Cell Carcinoma

  • Wang, De-Lin;Lan, Jian-Hua;Chen, Liang;Huang, Biao;Li, Zeng;Zhao, Xiu-Min;Ma, Qiang;Sheng, Xia;Li, Wen-Bin;Tang, Wei-Xue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2799-2806
    • /
    • 2012
  • The aim of this study was to elucidate the role of the integrin-linked kinase (ILK) gene in development of human bladder transitional cell carcinoma (BTCC). Expression of ILK protein and ILK mRNA in 56 cases of human BTCC tissue and in 30 cases of adjacent normal bladder tissue was detected by immunohistochemistry S-P and reverse transcription polymerase chain reaction (RT-PCR), respectively. Four specific miRNA RNAi vectors targeting human ILK were synthesized and transfected into BIU-87 cells by liposome to obtain stable expression cell strains. The influence of ILK on proliferation of BTCC was detected by MTT, FCM on athymic mouse tumorigenesis. The positive rate of ILK protein in BTCC tissue (53.6%) was much higher than adjacent normal bladder tissue (10.0%) (p<0.05). Similarly, expression of ILK mRNA in BTCC tissue ($0.540{\pm}0.083$) was significantly higher than in adjacent normal bladder tissue ($0.492{\pm}0.070$) (p<0.05). MTT showed that the proliferation ability of miRNA-ILK transfected group was clearly decreased (p<0.05), the cell cycle being arrested in G0/G1-S, an tumorigenesis in vivo was also significantly reduced (p<0.05). ILK gene transcription and protein expression may be involved in the development of BTCC, so that ILK might be the new marker for early diagnosis and the new target for gene treatment.

Inhibitory Efficacy of Dioscoreae Rhizoma on MITF, TRP-1, TRP-2, Tyrosinase, PKA and ERK Expression in Melanoma Cells (B16F10) (산약의 멜라노마 세포(B16F10)에서 MITF, TRP-1, TRP-2, Tyrosinase, PKA, ERK 발현 억제 효과)

  • Lee, Soo-Yeon;Yoo, Dan-Hee;Joo, Da-Hye;Lee, Jin-Young
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.95-100
    • /
    • 2015
  • Objectives : The purpose of this study was to research the whitening effects and developing by cosmetics of the extract fromDioscoreae Rhizoma, which is one of the most popular health-promoting herb in herbal medications.Methods : We performed tyrosinase inhibition assay, reverse transcription-polymerase chain reaction (RT-PCR) and western blot for whitening effects. Also we measured MTT assay for cell viability.Results : The results were obtained as follows : For whitening effect, tyrosinase inhibition rate of extract fromDioscoreae Rhizomashowed more than 42.28% at 1,000 ㎍/㎖ concentration. Cell toxicity effect on melanoma cells (B16F10) of extract fromDioscoreae Rhizomashowed 81.97% with toxicity at 50 ㎍/㎖ concentration. So we were measured at a concentrations of 5, 10 and 50 ㎍/㎖ in all experiments involving cell. In addition, whitening related mRNAs including microphthalmia associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), tyrosinase related protein-2 (TRP-2), tyrosinase were reduced byDioscoreae Rhizoma. We also foundDioscoreae Rhizomatransiently decreased protein kinase A (PKA) which is known to be upstream to the down regulation of MITF and tyrosinase. But phosphorylation of extracellular signal related kinase (pERK) were increased byDioscoreae Rhizoma. These results imply thatDioscoreae Rhizomadecrease melanogenesis via ERK activation and subsequent down regulation of MITF and tyrosinase.Conclusions : Therefore, all these findings suggested the potent usage ofDioscoreae Rhizomaas materials of functional cosmetics by confirming whitening activity related with melanin content.

Mechanism of Action of Nigella sativa on Human Colon Cancer Cells: the Suppression of AP-1 and NF-κB Transcription Factors and the Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7943-7957
    • /
    • 2015
  • Background and Aims: Colorectal cancer is one of the leading causes of death in the world. The aim of this study was to investigate the growth-suppression potentiality of a crude saponin extract (CSENS) prepared from medicinal herb, Nigella sativa, on human colon cancer cells, HCT116. Materials and Methods: HCT116 cells were subjected to increasing doses of CSENS for 24, 48 and 72 h, and then harvested and assayed for cell viability by WST-1. Flow cytometry analyses, cell death detection ELISA, fluorescent stains (Hoechst 33342 and acridine orange/ethidium bromide), DNA laddering and comet assays were carried out to confirm the apoptogenic effects of CSENS. Luciferase reporter gene assays, quantitative reverse transcription-polymerase chain reaction and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. Results: The results demonstrated that CSENS inhibited proliferation and induced apoptosis. Apoptosis was confirmed by flow cytometry analyses, while CSENS-treated cells exhibited morphological hallmarks of apoptosis including cell shrinkage, irregularity in cellular shape, cellular detachment and chromatin condensation. Biochemical signs of apoptosis, such as DNA degradation, were observed by comet assay and gel electrophoresis. The pro-apoptotic effect of CSENS was caspase-3-independent and associated with increase of the Bax/Bcl-2 ratio. CSENS treatment down-regulated transcriptional and DNA-binding activities of NF-${\kappa}B$ and AP-1 proteins, associated with down-regulation of their target oncogenes, c-Myc, cyclin D1 and survivin. On the other hand, CSENS up-regulated transcriptional and DNA-binding activities of Nrf2 and expression of cytoprotective genes. In addition, CSENS modulated the expression levels of ERK1/2 MAPK, p53 and p21. Conclusions: These findings suggest that CSENS may be a valuable agent for treatment of colon cancer.

Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts

  • Park, Jeong-Woong;Lee, Jeong Hyo;Kim, Seo Woo;Han, Ji Seon;Kang, Kyung Soo;Kim, Sung-Jo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1507-1515
    • /
    • 2018
  • Objective: In the poultry industry, the most important economic traits are meat quality and carcass yield. Thus, many studies were conducted to investigate the regulatory pathways during muscle differentiation. To gain insight of muscle differentiation mechanism during growth period, we identified and validated calcium-related genes which were highly expressed during muscle differentiation through mRNA sequencing analysis. Methods: We conducted next-generation-sequencing (NGS) analysis of mRNA from undifferentiated QM7 cells and differentiated QM7 cells (day 1 to day 3 of differentiation periods). Subsequently, we obtained calcium related genes related to muscle differentiation process and examined the expression patterns by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results: Through RNA sequencing analysis, we found that the transcription levels of six genes (troponin C1, slow skeletal and cardiac type [TNNC1], myosin light chain 1 [MYL1], MYL3, phospholamban [PLN], caveolin 3 [CAV3], and calsequestrin 2 [CASQ2]) particularly related to calcium regulation were gradually increased according to days of myotube differentiation. Subsequently, we validated the expression patterns of calcium-related genes in quail myoblasts. These results indicated that TNNC1, MYL1, MYL3, PLN, CAV3, CASQ2 responded to differentiation and growth performance in quail muscle. Conclusion: These results indicated that calcium regulation might play a critical role in muscle differentiation. Thus, these findings suggest that further studies would be warranted to investigate the role of calcium ion in muscle differentiation and could provide a useful biomarker for muscle differentiation and growth.

Expression Pattern of Early Growth Response Gene 1 during Olive Flounder (Paralichthys olivaceus) Embryonic Development

  • Yang, Hyun;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.233-240
    • /
    • 2014
  • The early growth response protein 1 (Egr-1) is a widely reported zinc finger protein and a well known transcription factor encoded by the Egr-1 gene, which plays key roles in many aspects of vertebrate embryogenesis and in adult vertebrates. The Egr-1 expression is important in the formation of the gill vascular system in flounders, which develops during the post-hatching phase and is essential for survival during the juvenile period. However, the complete details of Egr-1 expression during embryo development in olive flounder are not available. We assessed the expression patterns of Egr-1 during the early development of olive flounders by using reverse transcription polymerase chain reaction (RT-PCR) analysis. Microscopic observations showed that gill filament formation corresponded with the Egr-1 expression. Thus, we showed that Egr-1 plays a vital role in angiogenesis in the gill filaments during embryogenesis. Further, Egr-1 expression was found to be strong at 5 days after hatching (DAH), in the development of the gill vascular system, and this strong expression level was maintained throughout all the development stages. Our findings have important implications with respect to the biological role of Egr-1 and evolution of the first respiratory blood vessels in the gills of olive flounder. Further studies are required to elucidate the Egr-1-mediated stress response and to decipher the functional role of Egr-1 in developmental stages.

Development and Characterization of Expression Vectors for Corynebacterium glutamicum

  • Lee, Jinho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.70-79
    • /
    • 2014
  • In an attempt to develop a variety of expression vector systems for Corynebacterium glutamicum, six types of promoters, including $P_{tac}$, $P_{sod}$, $P_{sod}$ with a conserved Shine-Dalgarno (SD) sequence from C. glutamicum, $P_{ilvC}$, $P_{ilvC}$ with a conserved SD-1 ($P_{ilvC-M1}$), and $P_{ilvC}$ with a conserved SD-2 ($P_{ilvC-M2}$), were cloned into a modified shuttle vector, pCXM48. According to analysis of promoter strength by quantitative reverse transcription PCR, $P_{sod}$ and $P_{sod-M}$ were superior to tac and ilvC promoters in terms of transcription activity in C. glutamicum. All of the promoters have promoter activities in Escherichia coli, and $P_{sod-M}$ displayed the highest level of transcriptional activity. The protein expression in constructed vectors was evaluated by measuring the fluorescence of green fluorescent protein (GFP) and SDS-PAGE. C. glutamicum harboring plasmids showed GFP fluorescence with an order of activity of $P_{ilvC}$ > $P_{ilvC-M1}$ > $P_{sod}$ > $P_{ilvC-M2}$ > $P_{sod-M}$, whereas all plasmids except pCSP30 with $P_{sod}$ displayed fluorescence activities in E. coli. Of them, the strongest level of GFP was observed in E. coli with $P_{sod-M}$, and this seems to be due to the introduction of the conserved SD sequence in the translational initiation region. These results demonstrate that the expression vectors work well in both C. glutamicum and E. coli for the expression of target proteins. In addition, the vector systems harboring various promoters with different strengths, conserved SD sequences, and multiple cloning sites will provide a comfortable method for cloning and gene expression, and consequently contribute to the metabolic engineering of C. glutamicum.

Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma

  • Song, Heewon;Lee, Young Joo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.240-246
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods: The effects of the KRG on inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion: We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of $PPAR{\gamma}$ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. $PPAR{\gamma}$ protein levels and $PPAR{\gamma}$-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the $PPAR{\gamma}$ inhibitor GW9662. In addition, the inhibition of $PPAR{\gamma}$ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on $PPAR{\gamma}$ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly $PPAR{\gamma}$ and to identify the constituents responsible for this activity.

Tanshinone I, an Active Ingredient of Salvia miltiorrhiza, Inhibits Differentiation of 3T3-L1 Preadipocytes and Lipid Accumulation in Zebrafish

  • Kwon, Hyo-Shin;Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Objectives: Tanshinone I is a bioactive constituent in Salvia miltiorrhiza. At present, the anti-obesity effect and mechanism of tanshinone I are not fully understood. Here we investigated the effect of tanshinone I on lipid accumulation in 3T3-L1 preadipocytes and zebrafish. Methods: Lipid accumulation and triglyceride (TG) content in 3T3-L1 cells were determined by Oil Red O staining and AdipoRed assay, respectively. The expression and phosphorylation levels of adipogenic/lipogenic proteins in 3T3-L1 cells were evaluated by Western blotting. The messenger RNA (mRNA) expression levels of adipogenic/lipogenic markers and leptin in 3T3-L1 cells were measured by reverse transcription polymerase chain reaction (RT-PCR). Lipid accumulation in zebrafish was assessed by LipidGreen2 staining. Results: Tanshinone I at 5 μM largely blocked lipid accumulation and reduced TG content in differentiating 3T3-L1 cells. Furthermore, tanshinone I decreased the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. In addition, tanshinone I increased the phosphorylation of adenosine 3',5'-cyclic monophosphate (cAMP)-activated protein kinase (AMPK) while decreased the intracellular adenosine triphosphate (ATP) content with no change in the phosphorylation and expression of liver kinase-B1 in differentiating 3T3-L1 cells. Importantly, tanshinone I also reduced the extent of lipid deposit formation in developing zebrafish. Conclusions: These findings demonstrate that tanshinone I has strong anti-adipogenic effects on 3T3-L1 cells and reduces adiposity in zebrafish, and these anti-adipogenic effect in 3T3-L1 cells are mediated through control of C/EBP-α, PPAR-γ, STAT-3, FAS, ACC, perilipin A, and AMPK.