Browse > Article
http://dx.doi.org/10.4014/jmb.1310.10032

Development and Characterization of Expression Vectors for Corynebacterium glutamicum  

Lee, Jinho (Department of Food Science and Biotechnology, Kyungsung University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.1, 2014 , pp. 70-79 More about this Journal
Abstract
In an attempt to develop a variety of expression vector systems for Corynebacterium glutamicum, six types of promoters, including $P_{tac}$, $P_{sod}$, $P_{sod}$ with a conserved Shine-Dalgarno (SD) sequence from C. glutamicum, $P_{ilvC}$, $P_{ilvC}$ with a conserved SD-1 ($P_{ilvC-M1}$), and $P_{ilvC}$ with a conserved SD-2 ($P_{ilvC-M2}$), were cloned into a modified shuttle vector, pCXM48. According to analysis of promoter strength by quantitative reverse transcription PCR, $P_{sod}$ and $P_{sod-M}$ were superior to tac and ilvC promoters in terms of transcription activity in C. glutamicum. All of the promoters have promoter activities in Escherichia coli, and $P_{sod-M}$ displayed the highest level of transcriptional activity. The protein expression in constructed vectors was evaluated by measuring the fluorescence of green fluorescent protein (GFP) and SDS-PAGE. C. glutamicum harboring plasmids showed GFP fluorescence with an order of activity of $P_{ilvC}$ > $P_{ilvC-M1}$ > $P_{sod}$ > $P_{ilvC-M2}$ > $P_{sod-M}$, whereas all plasmids except pCSP30 with $P_{sod}$ displayed fluorescence activities in E. coli. Of them, the strongest level of GFP was observed in E. coli with $P_{sod-M}$, and this seems to be due to the introduction of the conserved SD sequence in the translational initiation region. These results demonstrate that the expression vectors work well in both C. glutamicum and E. coli for the expression of target proteins. In addition, the vector systems harboring various promoters with different strengths, conserved SD sequences, and multiple cloning sites will provide a comfortable method for cloning and gene expression, and consequently contribute to the metabolic engineering of C. glutamicum.
Keywords
Corynebacterium; expression vector; $P_{tac}$; $P_{sod}$; $P_{ilvC}$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Komarova AV, Tchufistova LS, Dreyfus M, Boni IV. 2005. AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J. Bacteriol. 187: 1344-1349.   DOI   ScienceOn
2 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-($\Delta\Delta$CT) method. Methods 25: 402-408.   DOI   ScienceOn
3 Martín JF, Barreiro C, González-Lavado E, Barriuso M. 2003. Ribosomal RNA and ribosomal proteins in corynebacteria. J. Biotechnol. 104: 41-53.   DOI   ScienceOn
4 Nesvera J, Patek M. 2011. Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl. Microbiol. Biotechnol. 90: 1641-1654.   DOI
5 Becker J, Wittmann C. 2012. Bio-based production of chemicals, materials and fuels - Corynebacterium glutamicum as versatile cell factory. Curr. Opin. Biotechnol. 23: 631-640.   DOI   ScienceOn
6 Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587- 8596.   DOI   ScienceOn
7 Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. 2011. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168.   DOI   ScienceOn
8 Berg L, Lale R, Bakke I, Burroughs N, Valla S. 2009. The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5'-untranslated part of mRNA. Microb. Biotechnol. 2: 379-389.   DOI   ScienceOn
9 Billman-Jacobe H, Wang L, Kortt A, Steward D, Radford A. 1995. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613.
10 Hanssler E, Muller T, Palumbo K, Patek M, Brocker M, Kramer R, Burkovski A. 2009. A game with many players: control of gdh transcription in Corynebacterium glutamicum. J. Biotechnol. 142: 114-122.   DOI   ScienceOn
11 Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109.   DOI   ScienceOn
12 Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W. 1992. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J. Bacteriol. 174: 5462-5465.   DOI
13 Jakoby M, Ngouoto-Nkili CE, Burkovski A. 1999. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol. Tech. 13: 437-441.   DOI
14 Jana S, Deb JK. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67: 289-298.   DOI   ScienceOn
15 Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25.   DOI   ScienceOn
16 Khlebnikov A, Risa O, Skaug T, Carrier TA, Keasling JD. 2000. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J. Bacteriol. 182: 7029-7034.   DOI   ScienceOn
17 Kim HJ, Kim TH, Kim Y, Lee HS. 2004. Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J. Bacteriol. 186: 3453-3460.   DOI   ScienceOn
18 Kohlstedt M, Becker J, Wittmann C. 2010. Metabolic fluxes and beyond - systems biology understanding and engineering of microbial metabolism. Appl. Microbiol. Biotechnol. 88: 1065- 1075.   DOI
19 Date M, Itaya H, Matsui H, Kikuchi Y. 2006. Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett. Appl. Microbiol. 42: 66-70.   DOI   ScienceOn
20 de Smit MH, van Duin J. 1994. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244: 144-150.   DOI   ScienceOn
21 Seo SW, Yang J, Jung GY. 2009. Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli. Biotechnol. Bioeng. 104: 611-616.   DOI   ScienceOn
22 Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969.   DOI   ScienceOn
23 Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
24 Santamaría R, Gil JA, Mesas JM, Martín JF. 1984. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen. Microbiol. 130: 2237-2246.
25 Tauch A, Pühler A, Kalinowski J, Thierbach G. 2003. Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J. Biotechnol. 104: 27-40.   DOI   ScienceOn
26 Tsuchiya M, Morinaga Y. 1988. Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Nat. Biotechnol. 6: 428-430.   DOI
27 van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545.   DOI   ScienceOn
28 Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C. 2013. Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C4 and C5 dicarboxylic acids. J. Proteomics 85: 65-88.   DOI   ScienceOn
29 Wendisch VF. 2003. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J. Biotechnol. 104: 273-285.   DOI   ScienceOn
30 Vasicová P, Pátek M, Nesvera J, Sahm H, Eikmanns B. 1999. Analysis of the Corynebacterium glutamicum dapA promoter. J. Bacteriol. 181: 6188-6191.
31 Cortay JC, Nègre D, Galinier A, Duclos B, Perrière G, Cozzone AJ. 1991. Regulation of the acetate operon in Escherichia coli: purification and functional characterization of the IclR repressor. EMBO J. 10: 675-679.
32 Neuner A, Heinzle E. 2011. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol. J. 6: 318-329.   DOI   ScienceOn
33 Park JU, Jo JH, Kim YJ, Chung SS, Lee JH, Lee HH. 2008. Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes. J. Microbiol. Biotechnol. 18: 639-647.
34 Park YS, Seo SW, Hwang S, Chu HS, Ahn JH, Kim TW, et al. 2007. Design of 5'-untranslated region variants for tunable expression in Escherichia coli. Biochem. Biophys. Res. Commun. 356: 136-141.   DOI   ScienceOn
35 Patek M, Eikmanns BJ, Pátek J, Sahm H. 1996. Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142: 1 2 97- 1309.   DOI   ScienceOn
36 Romasi EF, Lee J. 2013. Development of indole-3-acetic acidproducing Escherichia coli by functional expression of IpdC, AspC, and Iad1. J. Microbiol. Biotechnol. 23: 1726-1736.   DOI   ScienceOn
37 Salim K, Haedens V, Content J, Leblon G, Huygen K. 1997. Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl. Environ. Microbiol. 63: 4392-4400.
38 Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27: 946-950.   DOI   ScienceOn
39 Ravasi P, Peiru S, Gramajo H, Menzella HG. 2012. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb. Cell Fact. 11: 147-157.   DOI
40 Hermann T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104: 155-172.   DOI   ScienceOn
41 Suzuki N, Inui M, Yukawa H. 2007. Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 77: 871-878.   DOI