• Title/Summary/Keyword: reverse transcription

Search Result 1,360, Processing Time 0.027 seconds

Nucleotide Sequence of Hop Stunt Viroid Kh Strain (HSVd-Kh) (호프 왜화바이로이드 Kh 계통 (HSVd-Kh)의 염기서열)

  • 이재열;김경숙;정동수
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.612-613
    • /
    • 1998
  • The nucleotide sequence of hop stunt viroid HHSVd) Kh strain was sequenced by the reverse transcription and polymerase chain reaction. It consists of 296 nucleotides, and differs by one nucleotide deletion of cytosine at the position of 295 from the HSVd-K strain which consists of 297 nucletoides.

  • PDF

Detection of Fish Rhabdoviruses using a Diagnostic Fish Rhabdovirus DNA Chip

  • Kim, Young-Ju;Lee, Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.185-187
    • /
    • 2005
  • We tested the in vivo ability of a DNA chip to detect virus-specific genes from virus-infected olive flounder Paralichthys olivaceus and rainbow trout Oncorhynchus mykiss. Target cDNA was obtained from total RNA of virus infected cell lines by reverse transcription (RT) and was labeled with fluorescent dye (Cy5-dUTP). The results show the successful detection of infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicaemia virus (VHSV) genes in the virus-infected fishes.

Severe Fever with Thrombocytopenia Syndrome Patients with Hemophagocytic Lymphohistiocytosis Retrospectively Identified in Korea, 2008-2013

  • Kim, Kye-Hyung;Lee, Myung Jin;Ko, Mee Kyung;Lee, Eun Yup;Yi, Jongyoun
    • Journal of Korean Medical Science
    • /
    • v.33 no.50
    • /
    • pp.319.1-319.5
    • /
    • 2018
  • The incidence of severe fever with thrombocytopenia syndrome (SFTS) has increased in Korea since a first report in 2013. We investigated whether SFTS existed before 2013 using real-time reverse transcription polymerase chain reaction and stored blood samples from febrile patients with thrombocytopenia. Four cases of SFTS were identified, with the earliest occurring in 2008.

Anti-oxidant Function and Inhibitory Effects of the Expression of MITF, TRP-1, TRP-2 and Tyrosinase of Sesamum indicum L. in B16F10 Melanoma Cells (참깨 추출물의 항산화 활성 및 melanoma cell (B16F10)에서 MITF, TRP-1, TRP-2, tyrosinase 의 발현 저해)

  • Yoo, Dan-Hee;Joo, Da-Hye;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.318-324
    • /
    • 2017
  • This study was performed to improve the antioxidant and skin-whitening activities of 70% ethanol extract from Sesamum indicum L. (SIL). The electron-donating ability of the SIL extract was 71.7% at a concentration of $1,000{\mu}g/ml$. The whitening effects that was measured by tyrosinase inhibition assay. As a result, SIL extract was shown 42% at $1,000{\mu}g/ml$ concentration. The cell toxicity on B16F10 melanoma cells of SIL of 70% ethanol extract showed 84.3% at $1,000{\mu}g/ml$ concentration. The microphthalmia-associated transcription factor (MITF), tyrosinase relate protein-1 (TRP-1), tyrosinase relate protein-2 (TRP-2) and Tyrosinase protein and mRNA expression inhibitory effect of SIL extract were measured by western blot and reverse transcription- polymerase chain reaction (PCR) at 50, 250, $500{\mu}g/ml$ concentration. Consequently, the MITF, TRP-1, TRP-2, Tyrosinase protein expression inhibitory effect of SIL extract was decreased by 68.3%, 39.2%, 89.7%, 22.3%, respectively, at $500{\mu}g/ml$ concentration. Moreover, MITF, TRP-1, TRP-2, Tyrosinase mRNA expression inhibitory effect by reverse-transcription-PCR of SIL extract was decreased by 81.8%, 66.5%, 84.2%, 68.1%, respectively, at $500{\mu}g/ml$ concentration. Therefore, we excellently identified the antioxidant activities and whitening effect of SIL extract, and this finding suggested that SIL extract has great potential as a cosmetic ingredients.

Presence of Pituitary Specific Transcription Factor Pit-1 in the Rat Brain: Intracerebroventricular Administration of Antisense Pit-1 Oligodeoxynucleotide Decreases Brain Prolactin mRNA Level

  • Tae Woo Kim;Hyun-Ju Kim;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.311-317
    • /
    • 1999
  • Prolactin (PRL) was reported to be locally synthesized in many brain areas including the hypothalamus, thalamus (TH) and hippocampus (HIP). In the pituitary lactotrophs, PRL synthesis is dependent upon a pituitary-specific transcription factor, Pit-1. In the present study, we attempted to identify Pit-1 or Pit-1-like protein in brain areas known as the synthetic sites of PRL. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis showed the same Pit-1 transcripts in brain areas such as the medial basal hypothalamus (MBH), preoptic area (POA), TH, and HIP with the Pit-1 transcripts in the anterior pituitary (AP). Electrophoretic mobility shift assay (EMSA) was run with nuclear protein extracts from brain tissues using a double strand oligomer probe containing a putative Pit-1 binding domain. Shifted bands were found in EMSA results with nuclear proteins from MBH, POA, TH and HIP. Specific binding of the Pit-1-like protein was further confirmed by competition with an unlabeled cold probe. Antisense Pit-1 oligodeoxynucleotide (Pit-1 ODN), which was designed to bind to the Pit-1 translation initiation site and block Pit-1 biosynthesis, was used to test Pit-1 dependent brain PRL transcription. Two nmol of Pit-1 ODN was introduced into the lateral ventricle of a 60-day old male rat brain. RNA blot hybridization and in situ hybridization indicated a decrease of PRL mRNA signals by the treatment of Pit-1 ODN. Taken together, the present study suggests that Pit-1 may play an important role in the transcriptional regulation of local PRL synthesis in the brain.

  • PDF

The Histone Demethylase PHF2 Promotes Fat Cell Differentiation as an Epigenetic Activator of Both C/EBPα and C/EBPδ

  • Lee, Kyoung-Hwa;Ju, Uk-Il;Song, Jung-Yup;Chun, Yang-Sook
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.734-741
    • /
    • 2014
  • Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)${\alpha}$ and C/EBP${\delta}$ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation.

Identification of CCL1 as a Gene Differentially Expressed in $CD4^+$ T cells Expressing TIM-3

  • Jun, Ka-Jung;Lee, Mi-Jin;Shin, Dong-Chul;Woo, Min-Yeong;Kim, Kyong-Min;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.203-209
    • /
    • 2011
  • Background: T cell immunoglobulin mucin containing molecule (TIM)-3 is expressed in differentiated Th1 cells and is involved in the suppression of the cytokine production by these cells. However, the regulation of the expression of other T cell genes by TIM-3 is unclear. Herein, we attempted to identify differentially expressed genes in cells abundantly expressing TIM-3 compared to cells with low expression of TIM-3. Methods: TIM-3 overexpressing cell clones were established by transfection of Jurkat T cells with TIM-3 expression vector. For screening of differentially expressed genes, gene fishing technology based on reverse transcription-polymerase chain reaction (RT-PCR) using an annealing control primer system was used. The selected candidate genes were validated by semi quantitative and real-time RT-PCR. Results: The transcription of TIMP-1, IFITM1, PAR3 and CCL1 was different between TIM-3 overexpressing cells and control cells. However, only CCL1 transcription was significantly different in cells transiently transfected with TIM3 expression vector compared with control cells. CCL1 transcription was increased in primary human $CD4^+$ T cells abundantly expressing TIM-3 but not in cells with low expression of TIM-3. Conclusion: CCL1 was identified as a differentially transcribed gene in TIM-3-expressing $CD4^+$ T cells.

Role of MAPK Signaling Pathways in Regulating the Hydrophobin Cryparin in the Chestnut Blight Fungus Cryphonectria parasitica

  • So, Kum-Kang;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.362-369
    • /
    • 2017
  • We assessed the regulation of cryparin, a class II hydrophobin, using three representative mitogen-activated protein kinase (MAPK) pathways in Cryphonectria parasitica. Mutation of the CpSlt2 gene, an ortholog of yeast SLT2 in the cell wall integrity (CWI) pathway, resulted in a dramatic decrease in cryparin production. Similarly, a mutant of the CpBck1 gene, a MAP kinase kinase kinase gene in the CWI pathway, showed decreased cryparin production. Additionally, mutation of the cpmk1 gene, an ortholog of yeast HOG1, showed decreased cryparin production. However, mutation of the cpmk2 gene, an ortholog of yeast Kss1/Fus3, showed increased cryparin production. The easy-wet phenotype and accumulation of the cryparin transcript in corresponding mutants were consistent with the cryparin production results. In silico analysis of the promoter region of the cryparin gene revealed the presence of binding motifs related to downstream transcription factors of CWI, HOG1, and pheromone responsive pathways including MADS-box- and Ste12-binding domains. Real-time reverse transcriptase PCR analyses indicated that both CpRlm1, an ortholog of yeast RLM1 in the CWI pathway, and cpst12, an ortholog of yeast STE12 in the mating pathway, showed significantly reduced transcription levels in the mutant strains showing lower cryparin production in C. prasitica. However, the transcription of CpMcm1, an ortholog of yeast MCM1, did not correlate with that of the mutant strains showing downregulation of cryparin. These results indicate that three representative MAPK pathways played a role in regulating cryparin production. However, regulation varied depending on the MAPK pathways: the CWI and HOG1 pathways were stimulatory, whereas the pheromone-responsive MAPK was repressive.

Inhibitory Efficacy of Angelica gigas Nakai on Microphthalmia-associated Transcription Factor (MITF), Tyrosinase Related Protein-1 (TRP-1), Tyrosinase Related Protein-2 (TRP-2), and Tyrosinase mRNA Expression in Melanoma Cells (B16F10) (멜라노마 세포에서 당귀추출물의 MITF, TRP-1, TRP-2, tyrosinase mRNA 발현 억제 효과)

  • Lee, Soo-Yeon;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1336-1341
    • /
    • 2013
  • The purpose of this study was to research the whitening effects of the extract from Angelica gigas Nakai, which is one of the most widely used herbal medicines in Asia. For whitening effects, the tyrosinase inhibition effect of the A. gigas Nakai extract was shown to be greater than 70% at 1,000 ${\mu}g/ml$ concentration. The result of measuring the cell toxicity effect of the extract from A. gigas Nakai on melanoma cells showed 99% toxicity at 500 ${\mu}g/ml$ concentration. The microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), tyrosinase related protein-2 (TRP-2), and tyrosinase mRNA expression inhibitory effect by reverse transcription-PCR of the extract from A. gigas Nakai were decreased by 85.7%, 123.9%, 68.8%, and 208%, respectively, at 50 ${\mu}g/ml$ concentration. All these findings could verify that extract from A. gigas Nakai could have an effect on whitening. Moreover, extract from A. gigas Nakai has great potential as a cosmetic ingredient.