• Title/Summary/Keyword: retaining walls

Search Result 341, Processing Time 0.027 seconds

Investigation on Effect of Rainfall on Performance of Soil-Reinforced Regtaining Wall (강우가 보강토 옹벽의 거동에 미치는 영향에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.47-55
    • /
    • 2003
  • This paper presents the two field walls that demonstrate the effect of rainfall on the performance of soil-reinforced retaining wall. A field test wall constructed in Geotechnical Experimental Site at Sungkyunkwan University has been monitored for more than 8 months to study the long-term behavior of soil-reinforced retaining wall. The measured data showed a good correlation between rainfall and wall movement after wall completion. A case of failed soil-reinforced retaining wall also is presented to highlight the effect of rainfall on the performance of soil-reinforced retaining wall. Implications of the findings are discussed.

  • PDF

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Analysis of the Impact on Prediction Models Based on Data Scaling and Data Splitting Methods - For Retaining Walls with Ground Anchors Installed (데이터 스케일링과 분할 방식에 따른 예측모델의 영향 분석 - 그라운드 앵커가 설치된 흙막이 벽체 대상)

  • Jun Woo Shin;Heui Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.639-655
    • /
    • 2023
  • Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.

Behavior of Reinforced Earth Retaining Wall for Connector System Driving the Settlement of Reinforcement (보강재 침하를 허용하는 연결시스템을 적용한 보강토옹벽의 거동)

  • Jong-Keun Oh;Jeong, Jong-Gi;Lee, Song
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.156-161
    • /
    • 2006
  • Recently, construction of soil-reinforced segmental retaining walls which used geosynthetics are being increased day by day due to its construction efficiency, economic efficiency, and its aesthetic view. The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block However, this system may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall In this study, the new connector system, which is able to allow the settlement of reinforcement, was applied to analyze the effect of connector system of reinforced earth retaining wall The connection strength tests and centrifugal tests for both the conventional reinforced earth retaining wall and the settlement reinforced earth retaining wall were performed to compare the results

  • PDF

In-Situ Behaviors of Steel Frame-type Retaining Walls (조립식 강재틀 옹벽의 현장적응성 분석)

  • 박종배;임해식;박용부;나승민;정형식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.93-101
    • /
    • 2003
  • Steel frame-type retaining walls(SFRW) are constructed by on site bolting of prefabricated steel frames and internal filling of materials such as rocks with the size of 150-300mm. Easy & fast construction, superior drainage performance and structural performance to rigorous site conditions are some of the merits of applying the SFRW to various construction sites. After the development of the structural details, a test construction of SFRW, with the height of 6m and 30m in length, was carried out at an apartment site. After completion, several months of monitoring was carried out on the structure to check displacement, tilting, settlement, soil pressures and drainage characteristics. The results of the structural behavior of SFRW along with its construction methods are presented in the paper.

  • PDF

Temperature History of the Concrete for Retaining Wall Insulated with Double Layered Bubble Sheet in Summer (서중기 2중버블시트로 단열처리된 옹벽의 온도이력 특성)

  • Jung, Eun-Bong;Kim, Kyung-Hun;Jang, Deok-Bae;Kyung, Yeong-Hyeok;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.45-46
    • /
    • 2012
  • This study is intended to use the insulation effect of the dual bubble sheet to review the freezing prevention capability of underground walls by pouring the dual bubble sheet on the retaining walls before the concrete pouring to contemplate the temperature profile for each area of installation and the area of non-installation of the dual bubble sheet, and as a result, the temperature of the concrete was heightened than the ground due to the insulation effect in using the bubble sheet.

  • PDF

Natural Wall Systems-Esthetic View Element in a Downtown Facilities (기술사 마당 - 기술자료 - 도시시설물에서 미적(美的) 경관요소를 고려한 자연석 옹벽)

  • Cho, Kyoo-Yung;Roh, Keum-Too;Seo, Beom-Seok
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Retaining wall is a structure to stabilize the land slope as vertical retaining wall have constructed to make efficiency use of downtown area. Recently to commune with nature and refine a apartment and structure, natural friendly relations for retaining walls are tried to construct. The surface of the concrete walls are weave in various figures and colours, and in some places plant a shrub. Laying a landscape stone which have disclose a plane nature one means keeping up the natural slope, constructively safely set a anchor in front side and rear side wall between the natural stone, plant shrub or ground coverings to give shape into a rock. Natural stone is exposed of surface and planting the gardening, to be a type of natural friendly relations however that will be recycled. The size of blasted nature stone which is irregular become more natural type of one.

  • PDF

Review of Current Design Practice for Soil-Reinforced Segmental Retaining Walls (보강토 옹벽의 설계 현황에 대한 고찰)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.41-50
    • /
    • 2000
  • Segmental retaining wall market in Korea has been growing dramatically since late 1990s in both engineered and non-engineered applications. Despite the inherent conservatism in the current design approaches, numerous major and minor structural problems have been reported during and after construction, covering a range of minor structural damage to total collapse. Much still needs to be investigated to fill the gap between the theory and the practice. This paper reviews several design issues with regard to the segmental retaining walls such as the selection of shear strength parameters for backfill soil, local stability, and tiered wall construction. In addition, the effects of shear strength parameters and the fundamental behavior of tiered SRWs are examined based on the results of finite element analysis. Implications of the findings from this study to current design practices were discussed in detail.

  • PDF

An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

  • Shukla, Sanjay K.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.209-218
    • /
    • 2012
  • This paper presents the derivation of an analytical expression for the dynamic active thrust from c-${\phi}$ (c = cohesion, ${\phi}$ = angle of shearing resistance) soil backfill on rigid retaining walls with wall friction and adhesion. The derivation uses the pseudo-static approach considering tension cracks in the backfill, a uniform surcharge on the backfill, and horizontal and vertical seismic loadings. The development of an explicit analytical expression for the critical inclination of the failure plane within the soil backfill is described. It is shown that the analytical expression gives the same results for simpler special cases previously reported in the literature.

Development of Strengthening Method and Safety Analysis of Ecological Block and Vegetation Bank Protection (식생블록옹벽의 구조적 안전성 해석과 보강설계기법 연구)

  • Oh, Byung-Hwan;Cho, In-Ho;Lee, Young-Saeng;Lee, Keun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.207-215
    • /
    • 2003
  • Developed is a new environment-friendly concrete-block retaining wall system. The conventional analysis methods are not directly applicable because the proposed concrete-block wall system is made of by interlocking the blocks with shear keys. Therefore, the shear analysis as well as stability analysis have been conducted to secure the safety of block-wall system. Overall slope stability analysis was also performed. An appropriate strengthening method was developed to ensure the safety when the block-wall system is relatively high. The method of analysis for strengthening the concrete-block wall system was also proposed. The proposed environment-friendly concrete block retaining wall system shows reasonable safety and can be a good construction method for retaining walls and river bank walls.