• Title/Summary/Keyword: retaining wall

Search Result 733, Processing Time 0.036 seconds

A Case Study on Stability Evaluation of Road Slope based on Geological Condition (지질조건에 따른 도로사면 안정검토에 대한 사례연구)

  • Park, Chal-Sook;Kim, Jae-Hong
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.577-587
    • /
    • 2007
  • The length of study area was about 450m, and it was shown the geological condition of distinguished change of rock by cutting slope. In order to establish a slope stability, we carried out an engineering geological investigations about rock constituent, rock structure and a direction of discontinuous plane. The study area was divided into six section considered by direction of cutting slope, height of slope and geological condition. Analysis of cutting slope stability was carried out with stereo-graphic projection method by DIPS program which was feasible of stability analysis with geometrical correlation for a direction of discontinuous plane and direction of cutting slope. From analysis of cutting slope stability considered by construction, stability and economical efficiency, the slope stability countermeasures such as a high tensile wire net, slope protection method and enhanced retaining wall were established and operated which minimized effect caused by lower end of road on a relaxation of huge rock.

Environmental Characteristics of Waste Tire for Use as Soil Reinforcement (지반보강재로서 폐타이어 사용에 따른 환경영향 분석)

  • Cho, Jinwoo;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2013
  • This paper presents an experimental results on the environmental characteristics of waste tire. Experimental program includes a set of laboratory leaching tests and field pilot test for leachate analysis. Laboratory tests were conducted to illustrate how properties such as TOC, pH, turbidity and Zn change with tire sizes and drain conditions. In field pilot test, water samples were collected form a drainage system installed below the tire-reinforced retaining wall and analyzed for chemical quality. Laboratory leaching tests performed on various particle sizes of waste tire indicated that as tire size is increased, the concentration of leachate is decreased. In continuous flow column tests, the concentration of leachate decreased with the number of exposure periods or pore volumes flushed through the waste tire. However, during pause flow column tests, the concentration of leachates were increased with time. Field monitoring of effluent indicated that no significant adverse effects on ground water quality had occurred over a period of 12 months.

Recent trend and surgical management for panfacial fracture (범안면골 골절의 최근 경향 및 수술개념)

  • Kim, Jin-Wook
    • The Journal of the Korean dental association
    • /
    • v.54 no.10
    • /
    • pp.811-819
    • /
    • 2016
  • Panfacial fracture is extremely difficult to manage facial injuries but concomitant injuries and severe complications including facial esthetic and functional problems can make it harder. Thorough evaluation and closed co-work with other specialists is needed when reduction and fixation cannot be achieved quickly. Emergency bony support and soft tissue key suture provide the patients with airway integrity, hard and soft tissue vitality. A systemic treatment plan must be made by 3D CT image. This plan include airway management for surgery, sequence of reduction and fixation, approach method, soft tissue resuspension and reconstruction of lost tissue like inferior orbital wall, zygomaic buttress and soft tissue. From known to unknown structures, accurate reduction and fixation will provide proper occlusion, facial projection, width, hight and function. Consideration about facial retaining ligaments must be given to prevent soft tissue sagging.

  • PDF

Applications of SASW Method to Civil Engineering (토목 공학에서의 SASW 기법의 활용)

  • Song Myung-Jun;Jung Yun-Moon;Lee Young-Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.174-179
    • /
    • 1999
  • Shear wave velocity, one of major elastic constants in the dynamic design for civil structures, is conventionally measured from downhole, crosshole or sonic logging tests. SASW (Spectral Analysis of Surface Waves) method, which overcomes the disadvantage of the in-hole tests, can evaluate subsurface stiffness nondestructively and nonintrusively through measuring surface waves on surface. In this paper, principles of the SASW method are briefly described and the results of various field tests, conducted to investigate the applicability of the method, are summarized. The SASW method was successfully applied in evaluating the effects of dynamic compaction at Inchon international airport site, applied in evaluating the integrity of the lining and sidewall at a testing tunnel located in Mabukri, and applied in detecting thickness of a concrete retaining wall. The results of field tests and the nondestructive and economical characteristics of the method show the promising future of the SASW method in civil engineering projects.

  • PDF

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

An evaluation of a crushed stone filter and gabion retaining wall for reducing internal erosion of agricultural reservoirs

  • Lee, Young-Hak;Lee, Dal-Won;Ryu, Jung-Hyun;Kim, Cheol-Han;Heo, Joon;Shim, Jae-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.485-496
    • /
    • 2020
  • Recent changes in the disaster environment have greatly increased the possibility of internal erosion in deteriorated reservoirs; thus, countermeasure methods are required to enhance the drainage performance of embankments. Sand filters have been mainly used to prevent internal erosion; however, due to the sand depletion and environmental problems, new alternative materials are required to replace the sand in the filter zone. In this study, crushed stone was used instead of sand as a material that could satisfy permeability, material supply, demanding conditions, and economic efficiency. Although crushed stone has excellent drainage performance, it has a clogging phenomenon due to its high permeability. Accordingly, the materials need to be separated with a geotextile wrapping method. Additionally, the 3D numerical analysis and a large model experiment were conducted to evaluate the seepage characteristics and in-site application of the crushed stone filter. As a result, the crushed stone filter showed an excellent dispersion effect by reducing the pore water pressure by about 9.5 times that of the sand filter. In addition, it was shown that the safety factor for piping increased significantly by reducing internal erosion. When comparing the economics and supply and demand conditions of the material, crushed stone was evaluated as an effective method to reduce the internal erosion of embankments at deteriorated reservoirs.

The Effects of Permeability Anisotropy on the Active Earth Pressure In Compacted Sand Backfill (뒷채움 모래의 다짐에 의한 투수이방성이 주동토압에 미치는 영향)

  • Jeong, Seong-Gyo;Sin, Jong-Bo;Jeon, Yong-Baek
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.27-36
    • /
    • 1986
  • To investigate the seepage effect on the compacted backfill of retaining walls, an expriment and an analytical study were carried out First, the expriment was performed with a two-way permeameter newly designed for the do- termination on the degree of permeability anisotropy of compacted soils. As a result, e-log(kz/ky) plot showed a linear relationship, where kz and ky were permeability coefficients for the normal and the parallel directions to the compaction. The degree of permeability anisotropy, kz/ky was 2 to 4 at Dr>90% for sands, regardless of the methods of compaction. The kz/ky of the fine sand was greater than that of the coarse sand. Second, the exprimental results were applied to the extention of Gray's theory for the investigation of the active thrust affected by the seepage of permeability anisotropy. The active thrust was decreased with the increase in the degree of permeability anisotropy, and it It.as a little effect on wall friction.

  • PDF

Assessments of Creep Properties of Strip Type fiber Reinforcement (띠형 섬유보강재의 크리프 특성 평가)

  • 전한용;유중조;김홍택;김경모;김영윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.279-289
    • /
    • 2003
  • Geosynthetic reinforced earth wall was introduced about 20 years ago and many structures have been constructed. Especially, segmental concrete panel facing and friction tie system are the most popular system in Korea, and this friction tie was composed of high tenacity PET filament and LDPE(Low Density Polyethylene) sheath. Due to the lack of direct-test results, design coefficients of friction tie (creep reduction factor) had been determined by quoting the previous and the foreign reference data. This is an unreasonable fact for the use of friction ties. In this study, the creep tests were performed to evaluate the creep behavior of friction tie, and the reduction factor of creep was calculated for the correct design of geosynthetic reinforced earth retaining walls. From the test results, finally it was found that the allowable creep strength of friction tie is 60% of Tult during service life, and creep reduction factor is 1.67 for each grade of friction ties.

A Study on Slope Greening Technique Using Eco-Stone -Focused on growth conditions of plant species among treatment blocks- (Eco-Stone을 이용한 사면녹화공법에 관한 연구 -식재식물종의 처리구간 생장상태를 중심으로-)

  • Ahn, Tae Seok;Jo, Hyun-Kil;Ahn, Tae-Won;Kim, Ji-Ho;Chung, Kyung-Jin;Kim, Mi-Kyeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2004
  • For the slope stability and revegetation of retaining wall, Eco-Stone was built beside a newly constructed road in August, 2002. Eco-Stone blocks were constructed in 4 different combinations of irrigation and soil types. Within the Eco-Stone, planted were 6 species such as Forsythia koreana, Rhododendron mucronulatum, Spiraea prunifolia var. simpliciflora, Rhododendron sp. Euonymus japonica, and Aster koraiensis. Shoot growth was greater on common soils than at a better soil treatment for Forsythia koreana(P<0.01) and Spiraea prunifolia var. simpliciflora(P<0.05), while there were no significant differences for the other species. Biomass increment of the planted species also did not show significant differences between irrigation types, except Rhododendron sp. and Aster koraiensis of which biomass was higher under irrigation than at no irrigation for common soils. Most of the planted individuals were alive, showing survival ratio of 90~97% with no significant differences among treatment blocks. These results imply that the Eco-Stone can be used economically for slope stability and revegetation instead of concrete blocks, without a specific soil and irrigation requirement.

Merits and Demerits of the Inspection System introduced in Construction of City Planning Road: In Case of Crossing Road of the Aioiyama Green Area in Nagoya

  • Yutaka Okamura
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.2
    • /
    • pp.178-184
    • /
    • 2004
  • The Yatomi - Aioiyama line is a city-planning road that was notified in 1957 and subsequently prepared by land readjustments. Currently, approximately 900m of road pass in the inside of the Aioiyama green area has not been constructed. The surveying briefing session for inhabitants was held in July 1992, the project was authorized by the Ministry of Land, Infrastructure and Transport in September 1993, and the project briefing session for inhabitants was held in September 1993. The site purchase has been completed. At the May 2000 briefing session, inhabitants of the area began voicing dissenting demanding the conservation of the natural environment of this green area. The inspector system serves as the third party, independent of both the administration and the inhabitants. Before finalizing the geometric line form of the road to be constructed, some surveys of animals and plants found along the walking trails carried out intensively in the northern area, which is approximately 50 ha, of the Aioiyama green area. The natural environment inspector submitted a plan for changing the geometric line form of the road decided upon by city planning, and it was approved by the city planning council. If the shelter structure or the retaining wall structure is adopted at the location where large slope faces are produced by excavation or landfill, and if the bridge structure is adopted at the place where stream-lines and walking trails intersect, it leads to a reduction of approximately $40\%$ in the areas for which change is planned. Furthermore, approximately $20\%$ of the area to be changed is restored by returning soil to the roof of the shelter.

  • PDF