Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.3.191

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber  

Armaghani, Danial Jahed (Institute of Research and Development, Duy Tan University)
Mirzaei, Fatemeh (Department of Civil Engineering, Bu-Ali Sina University)
Shariati, Mahdi (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University)
Trung, Nguyen Thoi (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University)
Shariati, Morteza (Department of Civil Engineering Discipline, School of Engineering, Monash University Malaysia)
Trnavac, Dragana (Faculty of Business and Law, "Union - Nikola Tesla" University)
Publication Information
Geomechanics and Engineering / v.20, no.3, 2020 , pp. 191-205 More about this Journal
Abstract
Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.
Keywords
shear strength parameters; fiber-reinforced sandy soil; hybrid predictive model; optimization techniques;
Citations & Related Records
Times Cited By KSCI : 42  (Citation Analysis)
연도 인용수 순위
1 Ahmadi, M.A. and Shadizadeh, S.R. (2012), "New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept", Fuel, 102, 716-723. https://doi.org/10.1016/j.fuel.2012.05.050.   DOI
2 Arabnejad Khanouki, M., Ramli Sulong, N. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, Australia, July.
3 Arabnejad Khanouki, M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through beam connections composed of CFSST columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333. https://doi.org/10.4028/www.scientific.net/AMR.168-170.2329.   DOI
4 Arabnejad Khanouki, M., Ramli Sulong, N.H., Shariati, M. and Tahir, M.M. (2016), "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Construct. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002.   DOI
5 Armaghani, D.J., Koopialipoor, M., Marto, A. and Yagiz, S. (2019), "Application of several optimization techniques for estimating TBM advance rate in granitic rocks", J. Rock Mech. Geotech. Eng., 11(4), 779-789. https://doi.org/10.1016/j.jrmge.2019.01.002.   DOI
6 Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N. and Yagiz, S. (2017), "Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition", Tunn. Undergr. Sp. Technol., 63, 29-43. https://doi.org/10.1016/j.tust.2016.12.009.   DOI
7 Babu, G.L., Vasudevan, A.K. and Haldar, S. (2008), "Numerical simulation of fiber-reinforced sand behavior", Geotext. Geomembr., 26(2), 181-188. https://doi.org/10.1016/j.geotexmem.2007.06.004.   DOI
8 Basma, A.A., Barakat, S.A. and Omar, M. (2003), "Modeling time dependent swell of clays using sequential artificial neural networks", Environ. Eng. Geosci., 9, 279-288. https://doi.org/10.2113/9.3.279.   DOI
9 Ch, S. and Mathur, S. (2012), "Particle swarm optimization trained neural network for aquifer parameter estimation", KSCE J. Civ. Eng., 16, 298-307. https://doi.org/10.1007/s12205-012-1452-5.   DOI
10 Consoli, N., Casagrande, M. and Coop, M. (2005), "Behavior of a fiber-reinforced sand under large shear strains", Proceedings of 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, September.
11 Shariati, A., Shariati, M., Sulong, N.R., Suhatril, M., Khanouki, M.A. and Mahoutian, M. (2014), "Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Construct. Build. Mater., 52, 276-283. https://doi.org/10.1016/j.conbuildmat.2013.11.036.   DOI
12 Shao, Z., Gholamalizadeh, E., Boghosian, A., Askarian, B. and Liu, Z. (2019b), "The chiller's electricity consumption simulation by considering the demand response program in power system", Appl. Therm. Eng., 149, 1114-1124. https://doi.org/10.1016/j.applthermaleng.2018.12.121.   DOI
13 Shao, Z., Wakil, K., Usak, M., Amin Heidari, M., Wang, B. and Simoes, R. (2018), "Kriging empirical mode decomposition via support vector machine learning technique for autonomous operation diagnosing of CHP in microgrid", Appl. Therm. Eng., 145, 58-70. https://doi.org/10.1016/j.applthermaleng.2018.09.028.   DOI
14 Shariat, M., Mahmoudi Azar, S., Arjomand, M.A., Salmani Tehrani, H., Daei, M. and Safa, M. (2019), "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., 19(6), 473-484. https://doi.org/10.12989/gae.2019.19.6.473.   DOI
15 Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian multiplier method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243.   DOI
16 Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Shariati, M. (2012), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831. https://doi.org/10.5897/IJPS11.1604.
17 Shariati, A., Sulong, N.R., Suhatril, M. and Shariati, M. (2012), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831.DOI: https://doi.org/10.5897/IJPS11.1604
18 Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N. A., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019b), "Application of a hybrid artificial neural networkparticle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.   DOI
19 Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Turng, N.T. and Salih, M. N. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.   DOI
20 Shariati, M., Heyrati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M.N. and Poi-Ngian, S. (2019a), "Application of waste tire rubber aggregate in porous concrete", Smart Struct. Syst., 24(4), 553-566. https://doi.org/10.12989/sss.2019.24.4.553   DOI
21 Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019c), "Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.   DOI
22 Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2020), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
23 Shariati, M., Rafiei, S., Mehrabi, P., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019d), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. Concrete Construct., 8(3), 225. https://doi.org/10.12989/acc.2019.8.3.225   DOI
24 Fredlund, D.G., Xing, A., Fredlund, M.D. and Barbour, S.L. (1996), "The relationship of the unsaturated soil shear strength to the soil-water characteristic curve", Can. Geotech. J., 33(3), 440-448. https://doi.org/10.1139/t96-065.   DOI
25 Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M.M., Shariati, A. and Kazemi Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci., 6(36), 8044-8050. https://doi.org/10.5897/IJPS11.1585.
26 Das, S.K. and Basudhar, P.K. (2008), "Prediction of residual friction angle of clays using artificial neural network", Eng. Geol., 100(3-4), 142-145. https://doi.org/10.1016/j.enggeo.2008.03.001.   DOI
27 Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. http://doi.org/10.12989/scs.2019.30.2.141.   DOI
28 Donaghe, R.T., Chaney, R.C. and Silver, M.L. (1988), Advanced Triaxial Testing of Soil and Rock. American Society for Testing and Materials, 896.
29 Fenton, G.A. (2003), "Bearing capacity prediction of spatially random c $\varphi$ soils", Can. Geotech. J., 40(1), 54-65. https://doi.org/10.1139/t02-086.   DOI
30 Gan, J.K.M., Fredlund, D.G. and Rahardjo, H. (1988), "Determination of the shear strength parameters of an unsaturated soil using the direct shear test", Can. Geotech. J., 23(5), 500-510. https://doi.org/10.1139/t88-055.
31 Goktepe, A.B. and Sezer, A. (2010), "Effect of particle shape on density and permeability of sands", Proc. Inst. Civ. Eng. Geotech. Eng., 163(6), 307-320. https://doi.org/10.1680/geng.2010.163.6.307.   DOI
32 Gordan, B., Jahed Armaghani, D., Hajihassani, M. and Monjezi, M. (2016), "Prediction of seismic slope stability through combination of particle swarm optimization and neural network", Eng. Comput., 32(1), 85-97. https://doi.org/10.1007/s00366-015-0400-7.   DOI
33 Gray, D.H. and Al-Refeai, T. (1986), "Behavior of fabric-versus fiber-reinforced sand", J. Geotech. Eng., 112(8), 804-820. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(804).   DOI
34 Shi, X., Jaryani, P., Amiri, A., Rahimi, A. and Malekshah, E.H. (2019b), "Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect", Powder Technol., 346, 160-170. https://doi.org/10.1016/j.powtec.2018.12.071.   DOI
35 Shariati, M., Tahir, M.M., Wee, T.C., Shah, S.N.R., Jalali, A., Abdullahi, M.A.M. and Khorami, M. (2018), "Experimental investigations on monotonic and cyclic behavior of steel pallet rack connections", Eng. Fail. Anal., 85, 149-166. https://doi.org/10.1016/j.engfailanal.2017.08.014.   DOI
36 Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019e), "Estimation of moment and rotation of steel rack connections using extreme learning machine", Steel Compos. Struct., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.   DOI
37 Shi, X., Hassanzadeh-Aghdam, M. and Ansari, R. (2019a), "Viscoelastic analysis of silica nanoparticle-polymer nanocomposites", Compos. Part B Eng., 158, 169-178. https://doi.org/10.1016/j.compositesb.2018.09.084.   DOI
38 Simpson, P.K. (1990), "Artificial neural systems: foundations, paradigms, applications, and implementations", Int. J. Neural Syst., 1(03), 285-289. https://doi.org/10.1142/S0129065790000187.   DOI
39 Suhatril, M., Osman, N., Sari, P.A., Shariati, M. and Marto, A. (2019), "Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia", Geotech. Geol. Eng., 37(3), 2007-2014. https://doi.org/10.1007/s10706-018-0740-3.   DOI
40 Tiryaki, B. (2008), "Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees", Eng. Geol., 99, 51-60. https://doi.org/10.1016/j.enggeo.2008.02.003.   DOI
41 Hajihassani, M., Jahed Armaghani, D. and Kalatehjari, R. (2017), "Applications of particle swarm optimization in geotechnical engineering: A comprehensive review", Geotech. Geol. Eng., 36(2), 705-722. https://doi.org10.1007/s10706-017-0356-z.
42 Gray, D.H. and Ohashi, H. (1983), "Mechanics of fiber reinforcement in sand", J. Geotech. Eng., 109(3), 335-353. https://doi.org/10.1215/00294527-2010-028.   DOI
43 Gray, M.A. (1990), "Static response of sand reinforced with randomly distributed fibers", J. Geotech. Eng., 116(11), 1661-1677. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661).   DOI
44 Guo, P. (2008), "Modified direct shear test for anisotropic strength of sand", J. Geotech. Geoenviron. Eng., 134(9), 1311-1318. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1311).   DOI
45 Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
46 Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.   DOI
47 Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485.   DOI
48 Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-019-00780-7.
49 Liou, S.W., Wang, C.M. and Huang, Y.F. (2009), "Integrative discovery of multifaceted sequence patterns by frame-relayed search and hybrid PSO-ANN", J. UCS, 15(4), 742-764.
50 Mohammadhassani, M., Akib, S., Shariati, M., Suhatril, M. and Arabnejad Khanouki, M.M. (2014a), "An experimental study on the failure modes of high strength concrete beams with particular references to variation of the tensile reinforcement ratio", Eng. Fail. Anal., 41, 73-80. https://doi.org/10.1016/j.engfailanal.2013.08.014.   DOI
51 Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. http://dx.doi.org/10.12989/sem.2013.46.6.853.   DOI
52 Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014b), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. http://doi.org/10.12989/sss.2014.14.5.785.   DOI
53 Mohandes, M.A. (2012), "Modeling global solar radiation using Particle Swarm Optimization (PSO)", Solar Energy, 86, 3137-3145. https://doi.org/10.1016/j.sciaf.2019.e00094.   DOI
54 Momeni, E., Nazir, R., Jahed Armaghani, D. and Maizir, H. (2014), "Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN", Measurement, 57, 122-131. https://doi.org/10.1016/j.measurement.2014.08.007.   DOI
55 Najjar, Y.M. and Basheer, I.A. (1996), "Discussion: Stress-strain modeling of sands using artificial neural networks", J. Geotech. Eng., 122(11), 949-951. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:11(949).   DOI
56 McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biophys., 5, 115-133. https://doi.org/10.1007/BF02478259.   DOI
57 Tiwari, B., Ajmera, B., Moubayed, S., Lemmon, A. and Styler, K. (2012), "Soil modification with shredded rubber tires", Proceedings of the GeoCongress2012: State of the Art and Practice in Geotechnical Engineering, Oakland, California, U.S.A., March.
58 Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y. (2008), "A novel alpha finite element method (${\alpha}FEM$) for exact solution to mechanics problems using triangular and tetrahedral elements", Comput. Meth. Appl. Mech. Eng., 197(45-48), 3883-3897. https://doi.org/10.1016/j.cma.2008.03.011.   DOI
59 Mahdiyar, A., Armaghani, D.J., Marto, A., Nilashi, M. and Ismail, S. (2018), "Rock tensile strength prediction using empirical and soft computing approaches", Bull. Eng. Geol. Environ., 78(6), 4519-4531. https://doi.org/10.1007/s10064-10018-11405-10064.
60 Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2017), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manufact., 30(3), 1247-1257. https://doi.org/10.1007/s10845-019-01493-w.
61 Michalowski, R.L. (2004), "Limit loads on reinforced foundation soils", J. Geotech. Geoenviron. Eng., 130, 381. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(381).   DOI
62 Milovancevic, M., Marinovic, J.S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A Stat. Mech. Appl., 53, 121169. https://doi.org/10.1016/j.physa.2019.121169.
63 Mohamad, E.T., Faradonbeh, R.S., Armaghani, D.J., Monjezi, M. and Majid, M.Z.A. (2017), "An optimized ANN model based on genetic algorithm for predicting ripping production", Neural Comput. Appl., 28, 393-406. https://doi.org/10.1007/s00521-016-2359-8.   DOI
64 Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2018b), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manufact., 29, 1793-1801. https://doi.org/10.1007/s10845-016-1217-y.   DOI
65 Nelson, M.M. and Illingworth, W. T. (1991), A Practical Guide to Neural Nets.
66 Nguyen-Thoi, T., Vu-Do, H. C., Rabczuk, T. and Nguyen-Xuan, H. (2010), "A node-based smoothed finite element method (NSFEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes", Comput. Meth. Appl. Mech. Eng., 199(45-48), 3005-3027. https://doi.org/10.1016/j.cma.2010.06.017.   DOI
67 Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., 17(5), 623-639. http://doi.org/10.12989/scs.2014.17.5.623.   DOI
68 Toghroli, A., Shariati, M., Karim, M.R.B. and Ibrahim, Z. (2017), "Investigation on composite polymer and silica fume-rubber aggregate pervious concrete", Proceedings of the 5th International Conference on Advances in Civil, Structural and Mechanical Engineering-CSM 2017, Zurich, Switzerland.
69 Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Tonnizam Mohamad, E. and Khorami, M. (2018a), "A review on pavement porous concrete using recycled waste materials", Smart Struct. Syst., 22(4), 433-440. https://doi.org/10.12989/sss.2018.22.4.433.   DOI
70 Trung, N.T., Shahgoli, A.F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019b), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.   DOI
71 Khalilmoghadam, B., Afyuni, M., Abbaspour, K.C., Jalalian, A., Dehghani, A.A. and Schulin, R. (2009), "Estimation of surface shear strength in Zagros region of Iran-A comparison of artificial neural networks and multiple-linear regression models", Geoderma, 153(1-2), 29-36. https://doi.org/10.1016/j.geoderma.2009.07.008.   DOI
72 Kaya, A. and Kwong, J.K.P. (2007), "Evaluation of common practice empirical procedures for residual friction angle of soils: Hawaiian amorphous material rich colluvial soil case study", Eng. Geol., 92(1-2), 49-58. https://doi.org/10.1016/j.enggeo.2007.03.002.   DOI
73 Kayadelen, C., Gunaydin, O., Fener, M., Demir, A. and Ozvan, A. (2009), "Modeling of the angle of shearing resistance of soils using soft computing systems", Expert Syst. Appl., 36(9), 11814-11826. https://doi.org/10.1016/j.eswa.2009.04.008.   DOI
74 Kennedy, J. and Eberhart, R.C. (1995), "A discrete binary version of the particle swarm algorithm", Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, Florida, U.S.A., October.
75 Khandelwal, M. and Armaghani, D.J. (2016), "Prediction of drillability of rocks with strength properties using a hybrid GAANN technique", Geotech. Geol. Eng., 34, 605-620 https://doi.org/10.1007/s10706-015-9970-9.   DOI
76 Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067.   DOI
77 Koopialipoor, M., Jahed Armaghani, D., Hedayat, A., Marto, A. and Gordan, B. (2018), "Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions", Soft Comput., 23(14), 5913-5929. https://doi.org/10.1007/s00500-018-3253-3.
78 Waldron, L.J. (1977), "The shear resistance of root-permeated homogeneous and stratified soil", Soil Sci. Soc. Am. J., 41(5), 843-849. https://doi.org/10.2136/sssaj1977.03615995004100050005x.   DOI
79 Trung, N.T., Alemi, N., Haido, J.H., Shariati, M., Baradaran, S. and Yousif, S.T. (2019a), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., 24(3), 415-425. https://doi.org/10.12989/sss.2019.24.3.415.   DOI
80 Vidal, H. and Earth, F.B. (1969), "The principle of reinforced Earth", Highway Research Record 282, Highway Research Board.
81 Priddy, K.L. and Keller, P.E. (2005), Artificial Neural Networks: An Introduction, SPE Press.
82 Ladd, R. (1978), "Preparing test specimens using undercompaction", Geotech. Test. J., 1, 16-23. https://doi.org/10.1520/GTJ10364J.   DOI
83 Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M.D., Marto, A., Mu'azu, M., Ghanbari, E., Mandizadeh, M. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., 22(4): 425-432. https://doi.org/10.12989/sss.2018.22.4.425.   DOI
84 Park, S.S. (2011), "Unconfined compressive strength and ductility of fiber-reinforced cemented sand", Construct. Build. Mater., 25(2), 1134-1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017.   DOI
85 Penumadu, D. and Zhao, R. (1999), "Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)", Comput. Geotech., 24(3), 207-230. https://doi.org/10.1016/S0266-352X(99)00002-6.   DOI
86 Pham, B.T., Son, L.H., Hoang, T.A., Nguyen, D.M. and Tien Bui, D. (2018), "Prediction of shear strength of soft soil using machine learning methods", Catena, 166, 181-191. https://doi.org/10.1016/j.catena.2018.04.004.   DOI
87 Radoslaw, L. and Michalowski, J.C. (2002), "Strength anisotropy of fiber-reinforced sand", Comput. Geotech., 29(4), 279-299. https://doi.org/10.1016/S0266-352X(01)00032-5.   DOI
88 Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M., Tahir, M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., 27(3), 389-399. http://doi.org/10.12989/scs.2018.27.3.389,   DOI
89 Wang, X., Tang, Z., Tamura, H., Ishii, M. and Sun, W. D. (2004), "An improved backpropagation algorithm to avoid the local minima problem", Neurocomputing, 56, 455-460. https://doi.org/10.1016/j.neucom.2003.08.006.   DOI
90 Wang, Y., Guo, P., Dai, F., Li, X., Zhao, Y. and Liu, Y. (2018), "Behavior and modeling of fiber-reinforced clay under triaxial compression by combining the superposition method with the energy-based homogenization technique", Int. J. Geomech., 18(12), 04018172. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001313.   DOI
91 Wesley, L.D. (2004), "Residual strength of clays and correlation using Atterberg limits", Geotechnique, 54, 503-504. https://doi.org/10.1680/geot.2003.53.7.669.   DOI
92 Zornberg, J.G. (2002), "Discrete framework for limit equilibrium analysis of fibre-reinforced soil", Geotechnique, 52(8), 593-604. https://doi.org/10.1680/geot.2002.52.8.593.   DOI
93 Ranjan, G., Vasan, R.M. and Charan, H. D. (1997), "Probabilistic analysis of randomly distributed fiber-reinforced soil", J. Geotech. Eng., 123, 986-988. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(419).
94 Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E. T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., 22(4), 413-424. https://doi.org/10.1364/AO.54.000037.   DOI
95 Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., Hoang, N. and Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.   DOI
96 Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. https://doi.org/10.12989/scs.2018.29.1.067.   DOI
97 Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H.A. and Acikalin, S. (2008), "Prediction of uniaxial compressive strength of sandstones using petrography-based models", Eng. Geol., 96, 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009.   DOI
98 Safa, M., Sari, P. A., Shariat, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020b), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", Physica A Stat. Mech. Appl. https://doi.org/10.1016/j.physa.2019.124046.
99 Saemi, M., Ahmadi, M. and Varjani, A. (2007), "Design of neural networks using genetic algorithm for the permeability estimation of the reservoir", J. Petrol. Sci. Eng., 59, 97-105. https://doi.org/10.1016/j.petrol.2007.03.007.   DOI
100 Safa, M., Maleka, A., Arjomand, M.A., Khorami, M. and Shariat, M. (2020a), "Strain rate effects on soil-geosynthetic interaction in fine-grained soil", Geomech. Eng., 19(6), 533-542. https://doi.org/10.12989/gae.2019.19.6.533.   DOI
101 Shao, Z., Armaghani, D.J., Bejarbaneh, B.Y., Mu'azu, M. and Mohamad, E.T. (2019a), "Estimating the friction angle of black shale core specimens with hybrid-ANN approaches", Measurement. https://doi.org/10.1016/j.measurement.2019.06.007.
102 Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. http://doi.org/10.12989/scs.2016.21.3.679.   DOI
103 Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., 22(3), 335-340. http://doi.org/10.12989/sss.2018.22.3.335.   DOI
104 Shao, Z. and Vesel, A. (2015), "Modeling the packing coloring problem of graphs", Appl. Math. Modell., 39(13), 3588-3595. https://doi.org/10.1016/j.apm.2014.11.060.   DOI