DOI QR코드

DOI QR Code

Passive Force Acting on the Kicker Block Used to Support a Raker in Soft and Weathered Soil

연약지반과 풍화토지반에서 경사고임대 지지블록의 수동토압 산정

  • 김태형 (한국해양대학교 건설공학과) ;
  • 박이근 ((주)지오알앤디) ;
  • 김태오 ((주)지오알앤디 기술연구소) ;
  • 진현식 ((주)베이시스소프트 건설IT연구소)
  • Received : 2017.06.27
  • Accepted : 2017.08.28
  • Published : 2017.10.01

Abstract

Passive force acting on the kicker block used to support a raker is different dependent on soil's type. The passive force incorporating a factor of safety is considered for design of the retaining wall. However, an actual passive force developing on the kicker block is overestimated and it may lead to an unsafe design. In this study, the actual passive forces acting on the kicker block in soil ground are evaluated using 3-D Finite Element Program, PLAXIS. Soft and weathered soils are selected as a soil ground. The relation curves between horizontal displacement and actual passive force of the kicker block for each soil ground are obtained through numerical analyses. From the curves, the actual passive forces are determined as a yielding point, which are about 55.5% and 66% of Rankine's passive forces in soft and weathered soils, respectively.

경사고임대의 지지블록에서 발휘되는 수동토압은 지반종류에 따라 발휘되는 토압이 다르다. 영구구조물인 옹벽 설계에서는 수동토압의 안전율을 고려하도록 하고 있으나, 가시설에 설치되는 경사고임대 지지블록에 작용하는 토압은 실제 발휘되는 수동측토압보다 과하게 산정되어 불안전측의 설계가 되고 있다. 본 연구에서는 3차원 수치해석(PLAXIS)을 이용 토사지반에서 경사고임대 지지블록에 발생되는 수동측토압을 산정하였다. 토사지반으로 연약지반과 풍화토지반이 선택되었다. 수치해석결과 각 지반에서 지지블록의 수평변위와 수동측토압 관계 곡선이 산정되었으며 이 곡선상의 항복점이 설계에 적용할 경사고임대 지지체에서의 저항력으로 연약지반에서는 Rankine 수동토압의 약 55.5%, 풍화토지반에서는 약 66%를 보는 것이 안정성 측면에서 바람직한 것으로 나타났다.

Keywords

References

  1. Brinkgreve, R. B. J., Engin, E. and Swolfs, W. M. (Eds) (2012). Plaxis 3D 2011, Balkema.
  2. Budhu, M. (2010). Soil Mechanics and Foundations, Wiley.
  3. Dong, Y., Burd, H., Houlsby, G. T. and Xu, Z. (2013). "3D FEM Modeling of a Deep Excavation Case History Considering Small Strain Stiffness of Soil and Thermal Shrinkage of Concrete." Proc. 7th 11 Intl. 12 Conf. on Case Histories in Geotechnical Engineering, Chicago, #3.28b.
  4. Finno, R. J., Blackburn, J. T. and Roboski, J. F. (2007). "Threedimensional Effects for Supported Excavations in Clay." ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 1, pp. 30-36. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(30)
  5. Jang, B. S., Lee, S. H., Kim, J. M. and Kim, S. I. (2003). "Back Analysis of Earth Retaining wall Using Increment of Sequential Displacement." Journal of the Korean Geotechnical Society, Vol. 19, No. 5, pp. 7-14.
  6. Jeong, S. S. and Kim, Y. H. (2008). "Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method." Journal of the Korean Geotechnical Society, Vol. 25, No. 4, pp. 19-29.
  7. Jeong, S. S., Sim, J. U. and Lee, S. J. (2016). "A Study on the Rational Application of 3D Numerical Analysis for Anchored Earth Retaining Wall." Journal of the Korean Geotechnical Society, Vol. 32, No. 4, pp. 29-39. https://doi.org/10.7843/kgs.2016.32.4.29
  8. Korea Expressway Corporation (2012). Design Manual of Road: Chapter 7 Underground Roadway (in Korean).
  9. Korea Expressway Corporation (2013). Design Manual of Local Road Construction (in Korean).
  10. Korea Rail Network Authority (2015). Design Standard for Railroad : Roadbed (in Korean).
  11. Korean Geotechnical Society (2015). Introduction of the Design Standard of Structure Foundation (in Korean).
  12. Lee, F. H., Yong, K. Y., Quan, K. C. N. and Chee, K. T. (1998). "Effects of Corners in Strutted Excavations." ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 4, pp. 339-349. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:4(339)
  13. Lee, J. K. (2000). The Behavior of Retention Wall by 3-D Finite Element Method, Master thesis, Dankook University, p. 67.
  14. Lee, M. H. and Kim, T. H. (2015). "Parametric Study on Displacement of Earth Retaining Wall by the Bermed Excavation Using Back Analysis." Journal of the Korean Geosynthetics Society, Vol. 14, No. 4, pp. 23-33.
  15. Lee, S. and Kim, S. K. (2008). "A Study on Deformation Analysis of the Earth Retaining Wall." Journal of the Korean Geotechnical Society, Vol. 24, No. 2, pp. 27-36.
  16. Lim, J. C. (2011). Soil Mechanics, CIR.
  17. Ministry of Land, Infrastructure and Transport (2014). Construction Specification for Temporary Construction (in Korean).
  18. Ministry of Land, Infrastructure and Transport (2016a). KCS 21 30 00:2016 (in Korean).
  19. Ministry of Land, Infrastructure and Transport (2016b). KDS 21 30 00:2016 (in Korean).
  20. Ministry of Land, Transport and Maritime Affairs (2012). Design Standard for road (in Korean).
  21. Ministry of Land, Transport and Maritime Affairs (2013). Construction Specification for Building Construction (in Korean).
  22. NEWSis (2014). News report of apartment construction site collapse.
  23. Ou, C. Y., Chiou, D. C. and Wu, T. S. (1996). "Three-dimensional Finite Element Analysis of Deep Excavations." ASCE Journal of Geotechnical Engineering, Vol. 122, No. 5, pp. 337-345. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(337)
  24. Seong, J. H., Jung, S. H. and Shin, J. Y. (2011). "A Study for Safety Management on Ground Excavation by Analysis of Accident Events." Journal of the Korea Institute for Structural Maintenance Inspection, Vol. 15, No. 6, pp. 175-183. https://doi.org/10.11112/jksmi.2011.15.6.175