• Title/Summary/Keyword: resting cells

Search Result 223, Processing Time 0.03 seconds

Decreased Voltage Dependent $K^+$ Currents in Cerebral Arterial Smooth Muscle Cells of One-Kidney, One-Clip Goldblatt Hypertensive Rat

  • Oh, Young-Sun;Kim, Se-Hoon;Kim, Hoe-Suk;Jeon, Byeong-Hwa;Chang, Seok-Jong;Kim, Kwang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.471-479
    • /
    • 1999
  • The Kv channel activity in vascular smooth muscle cell plays an important role in the regulation of membrane potential and blood vessel tone. It was postulated that increased blood vessel tone in hypertension was associated with alteration of Kv channel and membrane potential. Therefore, using whole cell mode of patch-clamp technique, the membrane potential and the 4-AP-sensitive Kv current in cerebral arterial smooth muscle cells were compared between normotensive rat and one-kidney, one-clip Goldblatt hypertensive rat (lK,lC-GBH rat). Cell capacitance of hypertensive rat was similar to that of normotensive rat. Cell capacitance of normotensive rat and 1K,lC-GBH rat were $20.8{\pm}2.3$ and $19.5{\pm}1.4$ pF, respectively. The resting membrane potentials measured in current clamp mode from normotensive rat and 1K,lC-GBH rat were $-45.9{\pm}1.7$ and $-38.5{\pm}1.6$ mV, respectively. 4-AP (5 mM) caused the resting membrane potential hypopolarize but charybdotoxin $(0.1\;{\mu}M)$ did not cause any change of membrane potential. Component of 4-AP-sensitive Kv current was smaller in 1K,lC-GBH rat than in normotensive rat. The voltage dependence of steady-state activation and inactivation of Kv channel determined by using double-pulse protocol showed no significant difference. These results suggest that 4-AP-sensitive Kv channels playa major role in the regulation of membrane potential in cerebral arterial smooth muscle cells and alterations of 4-AP-sensitive Kv channels would contribute to hypopolarization of membrane potential in 1K,lC-GBH rat.

  • PDF

Effects of the Mechanical Stretch on Aligned Multi-Layered Nanofibrous Scaffolds Seeded with Smooth Muscle Cells (기계적 자극이 다층 구조의 나노파이버 지지체의 평활근 세포에 미치는 영향)

  • Shin, Ji-Won;Kim, Dong-Hwa;Heo, Su-Jin;Kim, Su-Hyang;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • The object of this study is to investigate the effects of intermittent cyclic stretching on the smooth muscle cells (SMCs) seeded onto aligned multi-layered fibrous scaffold. To make multi-layered fibrous scaffold, polyurethane (PU) and poly(ethylene oxide) (PEO) were electrospun alternatively, then were immersed into distilled water to extract PEO. Various types of scaffolds were fabricated depending on fiber directions, i.e., aligned or randomly oriented. The direction of stretching was either parallel or vertical to the fiber direction for the aligned scaffolds. The stretching was also applied to the randomly aligned scaffolds. The duration of stretching was 2 min with 15 min resting period. During the stretching, the maximum and minimum strain was adjusted to be 10 and 7%, respectively with the frequency of 1 Hz. The bioactivities of cells on the scaffolds were assessed by quantifying DNA, collagen, and glycosaminoglycan (GAG) levels. And the cell morphology was observed by staining F-actin. SMCs under parallel stretching to the fiber direction responded more positively than those in other conditions. From the results, we could explain the morphological effect of a substrate on cellular activities. In addition the synergistic effects of substrate and mechanical stimuli effects were confirmed.

Non-Invasive Environmental Detection using Heat Shock Gene-Green Fluorescent Protein Fusions

  • Cha, Hyeong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.355-356
    • /
    • 2000
  • Three 'stress probe' plasmids were constructed and characterized which utilize a green fluorescent protein (CFP) as a non-invasive reporter to elucidate Escherichia coli cellular stress responses in quiescent or 'resting' cells. Facile detection of cellular stress levels was achieved by fusion of three heat shock stress protein promoter elements, those of the heat shock transcription factor ${\sigma}^{32}$, pretense subunit ClpB, and chaperone DnaK, to the reporter gene $gfp_{uv}$. When perturbed by chemical or physical stress (such as heat shock, nutrient (amino acid) limitation, addition of IPTG, acetic acid, ethanol, phenol, antifoam, and salt (osmotic shock), the E. coli cells produced GFPuv which was easily detected from within the cells as emitted green fluorescence. A temporal and amplitudinal mapping of these responses was performed, demonstrating regions where quantitative delineation of cell stress was afforded.

  • PDF

Analysis of the hematopoiesis process in mammalian bone using homotopy perturbation method

  • Akano, Theddeus T.;Nwoye, Ephraim O.;Adeyemi, Segun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.51-64
    • /
    • 2020
  • In this study, the mathematical model that describes blood cell development in the bone marrow (i.e., hematopoiesis) has been studied via the Homotopy Perturbation Method (HPM). The results from the present work compared very well with the numerical solutions from published literature. This work has shown that the HPM is viable for solving delay differential equations born from hematopoiesis problem. The influence of the proliferating cells loss rate, time delay rate and the phase re-entry rate on the population densities of both the proliferating and resting cells were also determined through the underlined procedure.

GATING MECHANISM AND VOLTAGE-DEPENDENT BLOCK BY EXTERNAL DIVALENT CATIONS OF THE DELAYED RECTIFIER K CHANNEL IN RABBIT SINO-ATRIAL NODE CELLS

  • Ho, Won-Kyung;Lee, Suk-Ho;Earm, Yung-E
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.5-5
    • /
    • 1996
  • In sino-atrial node cells which act as the normal pacemaker of the heart, K conductance in resting state is minimal due to the absence of inward rectifier K channels K conductance only increases when the membrane is depolarized by the activation of the delayed rectifier K current I$\_$k/. In the present study, we investigated the gating mechanism of$\_$k/ using the whole cell patch clamp technique in isolated single sinoatrial cells of the rabbit. (omitted)

  • PDF

Short Heterodimer Partner as a Regulator in OxLDL-induced Signaling Pathway

  • Kimpak, Young-Mi
    • Proceedings of the PSK Conference
    • /
    • 2001.10a
    • /
    • pp.109-113
    • /
    • 2001
  • Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivations by the peroxisome proliferator activated receptor (PPAR)$\gamma$ and nuclear factor-kappa B (NF$\kappa$B). In this study, the oxLDL signaling pathways involved with the NF$\kappa$B transactivation were investigated by utilizing a reporter construct driven by three upstream NF$\kappa$B binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase of intracellular calcium and stimulated the NF-KB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. The NF$\kappa$B activation by oxLDL or lysoPC was inhibited by protein kinase C inhibitors or an intracellular calcium chelator. Tyrosine kinase or PI3 kinase inhibitors did not block the NF$\kappa$B transactivation. Furthermore, the oxLDL-induced NF$\kappa$B activity was abolished by the PPAR$\gamma$ ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, the NF$\kappa$B transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-$\kappa$B in resting macrophages via protein kinase C- and/or calcium-dependent pathways, which does not involve the endocytic processing of oxLDL. The endocytosis-dependent PPAR$\gamma$ activation by oxLDL may function as an inactivation route of the oxLDL induced NF$\kappa$B signal. Short heterodimer partner (SHP), specifically expressed in liver and a limited number of other tissues, is an unusual orphan nuclear receptor that lacks the conventional DNA-binding domain. In this work, we found that SHP expression is abundant in murine macrophage cell line RAW 264.7 but suppressed by oxLDL and its constituent I3-HODE, a ligand for peroxisome proliferator-activated receptor y. Furthermore, SHP acted as a transcription coactivator of nuclear factor-$\kappa$B (NF$\kappa$B) and was essential for the previously described NF$\kappa$B transactivation by lysoPC, one of the oxLDL constituents. Accordingly, NF$\kappa$B, transcriptionally active in the beginning, became progressively inert in oxLDL-treated RAW 264.7 cells, as oxLDL decreased the SHP expression. Thus, SHP appears to be an important modulatory component to regulate the transcriptional activities of NF$\kappa$B in oxLDL-treated, resting macrophage cells.

  • PDF

B-cell Differentiation (B 임파구의 분화)

  • Yang Mhan-Pyo;Lee Chang-Woo;Kwun Jong-Kuk;Hasegawa Atsuhiko
    • Journal of Veterinary Clinics
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • The B-lymphocyte differentiation from committed B-cell progenitors to antibody-secreting cells was discussed. B-cell progenitors derived from hematopoietic stem cells undergo the rearrangement of immunoglobulin(Ig) gene. The earliest cells as B-cell precursors have cytoplasmic Is(${\mu}$ chain). The entire Is molecule is expressed on the surface after synthesis of L chain. The resting B cells(Go stage) stimulated by binding antigen via Ig-receptors are activated(G$_1$ stage) and followed by proliferation(S stage), coupled with further selection(affinity maturation. class switch). The production of antibody against a particular antigen depends on the activation of B cells with surface Is capable of reacting with that antigen. This process does not occur in isolation but is controlled by helper and suppressor T cells and antigen presenting cells(APC). The mechanism of T cell-dependent B-cell response for production of antibody is largely explained by the cell to cell cooperation and soluble helper factors of T cells. 1) The antigen specific B cells and helper T cells are linked by Is-receptors, leading to the delivery of helper signals to the B cells. 2) Helper T cells recognize the processed antigen-derived peptides with the MHC class II molecules(la antigen) and is stimulated to secrete B-cell proliferation and differentiation factors which activate B cells of different antigenic specificity. The two models are shown currently 1) At low antigen concentration, only the antigen-specific B cell binds antigen and presents antigen-derived peptides with la molecules to helper T cells, which are stimulated to secrete cytokines(IL-4, IL-5, etc.) and 2) At high antigen concentration, antigen-derived peptides are presented by specific B cells, by B cells that endocytose the antigens, as well as by APC Cytokines secreted from helper T cells also lead to the activation of B cells and even bystander B cells in the on- vironmment and differentiate them into antibody-secreting plasma cells.

  • PDF

Astaxanthin Biosynthesis Enhanced by Reactive Oxygen Species in the Green Alga Haematococcus pluvialis

  • Kobayashi, Makio
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.322-330
    • /
    • 2003
  • The unicellular green alga Haematococcus pluvialis has recently attracted great inter-est due to its large amounts of ketocarotenoid astaxanthin, 3,3'-dihydroxy-${\beta}$,${\beta}$-carotene-4,4'-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle of H. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from veget ative to cyst cells. Furthermore, measurements of both in vitro and in vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative cells. Therefore, reactive oxygen species are involved in the regulation of both algal morph O-genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.

Signaling for Synergistic Activation of Natural Killer Cells

  • Kwon, Hyung-Joon;Kim, Hun Sik
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.240-246
    • /
    • 2012
  • Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy- dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.

Effects of Allicin on Cytokine Production Genes of Human Peripheral Blood Mononuclear Cells (마늘의 Allicin이 사람 단핵세포의 사이토카인 생산 유전자의 발현에 미치는 영향)

  • 박란숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.3
    • /
    • pp.191-196
    • /
    • 2002
  • The effect of allicin, the major component of garlic (Allium sativum), on the gene expression profiles of peripheral blood mononuclear cells from healthy donors was analyzed. DNA microarray which can detect expression signal of 862 genes revealed that allicin induced the expression of cytokine, chemokine, and immune-related genes in peripheral blood mononuclear cells. In contrast, allicin repressed the expression of adaptive immune-related genes, which are expressed in T helper 1 Iymphocytes. Simultaneous inhibitory and stimulatory effects of allicin were found on inflammatory cells. It is likely that allicin down-regulated the expression of specific genes that were previously up-regulated in resting cells, suggesting a new mechanism by which they exert positive and negative effect. Considering the broad and renewed interest in allicin, the profiles we describe here will be useful in designing more specific and efficient treatment strategies.