• Title/Summary/Keyword: response surface method (RSM)

Search Result 452, Processing Time 0.03 seconds

Development of a Structural Optimal Design Code Using Response Surface Method Implemented on a CAD Platform (반응표면법을 이용한 구조물 최적설계 프로그램의 개발)

  • Yeom, Kee-Sun;Huh, Jae-Sung;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.580-585
    • /
    • 2001
  • A response surface method(RSM) is utilized for structural optimization and implemented on a parametric CAD platform. Once an approximation of the performance function is made, no formal design sensitivity analysis is necessary. The approximation gives the designer the sensitivity information and furthermore intuition on the performance functions. The scheme for the design of experiment chosen for the RSM has a large influence on the accuracy of converged solutions and the amount of computation. The D-optimal design criterion as implemented in this paper is found efficient for the structural optimization. The program is developed on a parametric CAD platform and tested using several shape design problems of such as a torque arm and a belt clip. It is observed that the RSM used provides a faster convergence than other approximation methods for design sensitivity.

  • PDF

Study on the Airfoil Shape Design Optimization Using Database based Genetic Algorithms (데이터베이스 기반 유전 알고리즘을 이용한 효율적인 에어포일 형상 최적화에 대한 연구)

  • Kwon, Jang-Hyuk;Kim, Jin;Kim, Su-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.58-66
    • /
    • 2007
  • Genetic Algorithms (GA) have some difficulties in practical applications because of too many function evaluations. To overcome these limitations, an approximated modeling method such as Response Surface Modeling(RSM) is coupled to GAs. Original RSM method predicts linear or convex problems well but it is not good for highly nonlinear problems cause of the average effect of the least square method(LSM). So the locally approximated methods. so called as moving least squares method(MLSM) have been used to reduce the error of LSM. In this study, the efficient evolutionary GAs tightly coupled with RSM with MLSM are constructed and then a 2-dimensional inviscid airfoil shape optimization is performed to show its efficiency.

Optimal Design of Induction Motor Rotor Slot Shape for Electric Vehicle by Response Surface Method (반응표면법을 이용한 전기자동차 구동용 유도전동기의 회전자 슬롯형상 최적설계)

  • Jeon, Kyung-Won;Hahn, Sung-Chin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.58-66
    • /
    • 2011
  • In this paper, the starting torque and efficiency characteristics of the induction motor (IM) for the electric vehicle (EV) are improved by changing the slot shapes of squirrel cage. The initial model of the induction motor is designed by the loading distribution method (LDM), and then the rotor with squirrel cage of NEMA class A is selected to optimize the slot shape by response surface method(RSM). The design variables of rotor slot shape are obtained by the RSM. Starting torque and efficiency were calculated by the equivalent circuit method. As a result, starting torque and efficiency of the optimized model shows good performance through whole-speed range.

Optimum Design of BLDC Motor Magnet Using Genetic Algorithm and Response Surface Method (유전알고리즘과 반응표면법을 이용한 BLDC 전동기용 영구자석 최적설계)

  • Kim, Chang-Eob;Jeon, Mun-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.152-157
    • /
    • 2004
  • In this paper, an optimum design method is presented for BLDC moor magnet using genetic algorithm(GA) and response surface method(RSM). The cogging torque is calculated by finite element method for the designs obtained by GA and RSM. The results are compared and discussed for the simulation time and the cogging torque.

Reliability Analysis and Optimization Considering Dynamic Characteristics of Vehicle Torsion Beam (차량 토션빔의 동적 특성을 고려한 신뢰성 분석 및 최적설계)

  • 이춘승;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.813-817
    • /
    • 2002
  • This paper presents the reliability analysis technique on the dynamic characteristics of the torsion beam consisting the suspension system of passenger car. We utilize response surface method (RSM) and Monte Carlo simulation to obtain the response surface model that describes the limit state function for the natural frequencies of the torsion beam. Using the response surface model and the design optimization technique, we have obtained the optimized section considering the reliability of the torsion beam structure.

  • PDF

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

A Permanent Magnet Pole Shape Optimization for a 6MW BLDC Motor by using Response Surface Method (I) (RSM을 이용한 6MW BLDC용 영구자석의 형상 최적화 연구 (I))

  • Woo, Sung-Hyun;Chung, Hyun-Koo;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.65-67
    • /
    • 2008
  • An adaptive response surface method with Latin Hypercube sampling strategy is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed algorithm consists of the multi-objective Pareto optimization and ($1+{\lambda}$) evolution strategy to find the global optimal points with relatively fewer sampling data. In the adaptive RSM, an adaptive sampling point insertion method is developed utilizing the design sensitivities computed by using finite element method to set a reasonable response surface with a relatively small number of sampling points. The developed algorithm is applied to the shape optimization of PM poles for 6MW BLDC motor.

  • PDF

A Study on Solid Particle Erosion Wear Characteristics of High Cr White Iron Hardfacing by Response Surface Method (반응표면분석에 의한 고 Cr 철계 오버레이 용접부의 분체침식마모 특성의 연구)

  • 이형근
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.551-556
    • /
    • 2002
  • Solid particle erosion wear characteristics of high Cr white iron hardfacing were investigated using the erosion wear test method according with the ASTM G76-95. Wear experiments, where the blast angle, blast distance and blast pressure were selected as test variables, were planned and analyzed by response surface method (RSM to evaluate the wear loss statistically and quantitatively. The measured wear losses well coincided with the calculated ones by the experimental equation. The wear loss of high Cr cast iron hardfacing was increased with blasting pressure, but affected in a complicated way by the blasting angle and distance. Erosion wear of high Cr cast iron hardfacing could be well predicted by RSM analysis of wear variables.

A Permanent Magnet Pole Shape Optimization for a 6MW BLDC Motor by using Response Surface Method (II) (RSM을 이용한 6MW BLDC용 영구자석의 형상 최적화 연구 (II))

  • Woo, Sung-Hyun;Chung, Hyun-Koo;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.701-702
    • /
    • 2008
  • An adaptive response surface method with Latin Hypercube sampling strategy is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed algorithm consists of the multi-objective Pareto optimization and (1+${\lambda}$) evolution strategy to find the global optimal points with relatively fewer sampling data. In the adaptive RSM, an adaptive sampling point insertion method is developed utilizing the design sensitivities computed by using finite element method to get a reasonable response surface with a relatively small number of sampling points. The developed algorithm is applied to the shape optimization of PM poles for 6 MW BLDC motor, and the cogging torque is reduced to 19% of the initial one.

  • PDF

Mechanical parameters detection in stepped shafts using the FEM based IET

  • Song, Wenlei;Xiang, Jiawei;Zhong, Yongteng
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2017
  • This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.