• Title/Summary/Keyword: respiratory monitoring

Search Result 294, Processing Time 0.022 seconds

The Use of Graphic Monitoring during Mechanical Ventilation (기계적 환기기 사용중 그래픽 모니터링의 활용)

  • Son, Dong-Woo
    • Neonatal Medicine
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Graphic monitoring assists the clinician at the bedside in several ways. It can be helpful in fine-tuning or adjusting ventilator parameters. Graphic monitoring may help to determine the patient's response to pharmacologic agents. The clinician also has the ability to trend monitored events over a prolonged period of time. The neonatal patient's self respiration, synchrony to ventilator and respiratory efforts can be well recognized with graphic monitoring. Of all, it may enable detection of complications before they become clinically apparent. This article introduces the basics of real-time graphics.

Development of Respiratory Monitoring System by Inductive Plethysmography (인덕턴스 호흡감시 시스템의 개발)

  • Kim, Deok-Won;Yeon, Dong-Su;Kim, Su-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.353-358
    • /
    • 1995
  • The impedance pneumography which is widely used in monitoring respiration is simple to use and noninvasive, but it is sensitive to motion artifacts and insensitive to detect obstructive apnea. A 3-channel respiratory inductive plethysmography (RIP) developed in this study detects inductance change of the inductance band induced by cross-sectional area change of thorax or abdomen as one breathes. It was confirmed that RIP was less sensitive to various motion artifacts but more sensitive to detection of obstructive apnea than impedance pneumography.

  • PDF

Wearable wireless respiratory monitoring system (의복착용형 무선 호흡모니터 시스템)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.133-142
    • /
    • 2008
  • Respiration is induced by muscular contraction of the chest and abdomen, resulting in the abdominal volume change. Thus, continuous measurement of the abdominal dimension enables to monitor breathing activity. Conductive rubber cord has been previously introduced and tested to develop wearable application for respiratory measurements. The present study implemented wireless wearable respiratory monitoring system with the conductive rubber cord in the patient's pants. Signal extraction circuitry was developed to obtain the abdominal circumference changes reflecting the lung volume variation caused by respiratory activity. Wireless transmission was followed based on the zigbee communication protocol in a size of 65mm${\times}$105mm easily put in pocket. Successful wireless monitoring of respiration was performed in that breathing frequency was accurately estimated as well as different breathing patterns were easily recognized from the abdominal signal. $CO_2$ inhalation experiment was additionally performed in purpose of quantitative estimation of tidal volume. Air mixed with $0{\sim}5%\;CO_2$was inhaled by 4 normal males and the respiratory air flow rate, abdominal dimension change, and end tidal $CO_2$ concentration were simultaneously measured in steady state. $CO_2$ inhalation increased the tidal volume in normal physiological state with a correlation coefficient of 0.90 between the tidal volume and the end tidal $CO_2$ concentration. The tidal volume estimated from the abdominal signal linearly correlated with the accurate tidal volume measured by pneumotachometer with a correlation coefficient of 0.88 with mean relative error of approximately 8%. Therefore, the tidal volume was accurately estimated by measuring the abdominal dimension change.

Factors Affecting the Morbidity Related to Respiratory Dieseases in Urban Korea (한국 도시의 만성호흡기 질환 이환율에 영향을 주는 요인)

  • Han, Sung-Hyun;Park, Jae-Sung;Seo, Seung-Hee;Yoon, Jee-Eun;Jee, Sun-Ha
    • Korea journal of population studies
    • /
    • v.28 no.2
    • /
    • pp.205-217
    • /
    • 2005
  • Purpose: To evaluate the factors affecting hospital utilization for respiratory diseases by ecological study design and GIS tool. To raise the social concern for respiratory disease by the result. Methods: Hospital admission data supported by national health insurance cooperation were transformed to spread sheet data format and combined with air monitoring dataset. Air pollution data were collected from the annual report of air monitoring published by Korea Ministry of Environment. Socioeconomic statistics including population density, age distribution, forest ratio etc.. were filed using Korea National Statistical Office database. Multiple linear regression analysis was performed to evaluate the factors affecting hospital utilization for respiratory diseases. Analytical unit was 52 cities. Results: The factors affecting hospital utilization for respiratory diseases were the proportion of population 60 years and over, seaside city, $O_3$ level, smoking rate. Conclusions: However, outdoor pollutants monitoring data and smoking rate have weakness in reflecting individual exposure. Further research is required to propose more illustrative means to evaluate causal relationship between air pollution and respiratory health effect factors.

Assessing Seasonality of Acute Febrile Respiratory Tract Infections and Medication Use (인플루엔자 등 급성 호흡기계 질환과 의약품 사용의 계절적 상관성 분석)

  • Park, Juhee;Choi, Won Suk;Lee, Hye-Yeong;Kim, Kyoung-Hoon;Kim, Dong-Sook
    • Health Policy and Management
    • /
    • v.28 no.4
    • /
    • pp.402-410
    • /
    • 2018
  • Background: Monitoring appropriate medication categories can provide early warning of certain disease outbreaks. This study aimed to present a methodology for selecting and monitoring medications relevant to the surveillance of acute respiratory tract infections, such as influenza. Methods: To estimate correlations between acute febrile respiratory tract infection and some medication categories, the cross-correlation coefficient (CCC) was used and established. Two databases were used: real-time prescription trend of antivirals, anti-inflammatory drugs, antibiotics using Drug Utilization Review Program between 2012 and 2015 and physicians' number of encounters with acute febrile respiratory tract infections such as influenza outbreaks using the national level health insurance claims data. The seasonality was also evaluated using the CCC. Results: After selecting six candidate diseases that require extensive monitoring, influenza with highly specific medical treatment according to the health insurance claims data and its medications were chosen as final candidates based on a data-driven approach. Antiviral medications and influenza were significantly correlated. Conclusion: An annual correlation was observed between influenza and antiviral medications, anti-inflammatory drugs. Suitable models should be established for syndromic surveillance of influenza.

Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System

  • Yoo, Wook-Jae;Jang, Kyoung-Won;Seo, Jeong-Ki;Heo, Ji-Yeon;Moon, Jin-Soo;Park, Jang-Yeon;Lee, Bong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.235-239
    • /
    • 2010
  • In this study, we have fabricated two types of non-invasive fiber-optic respiration sensors that can measure respiratory signals during magnetic resonance (MR) image acquisition. One is a nasal-cavity attached sensor that can measure the temperature variation of air-flow using a thermochromic pigment. The other is an abdomen attached sensor that can measure the abdominal circumference change using a sensing part composed of polymethyl-methacrylate (PMMA) tubes, a mirror and a spring. We have measured modulated light guided to detectors in the MRI control room via optical fibers due to the respiratory movements of the patient in the MR room, and the respiratory signals of the fiber-optic respiration sensors are compared with those of the BIOPAC$^{(R)}$ system. We have verified that respiratory signals can be obtained without deteriorating the MR image. It is anticipated that the proposed fiber-optic respiration sensors would be highly suitable for respiratory monitoring during surgical procedures performed inside an MRI system.

Two algorithms for detecting respiratory rate from portable patient monitoring device (휴대형 심전도 모니터링 장치에서의 2가지 호흡 검출 알고리즘)

  • Kim, Jong-Myoung;Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Joug;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.36-38
    • /
    • 2006
  • In this study, two algorithms for detecting respiratory rate from Portable ECG device were presented. The first algorithms counts the number of ECG samples between R-R peaks, which varies according to respiratory states of patients, such as, exhalation and inhalation. The second algorithms detects the rate by measuring the size of R wave, which also varies according to the respiratory status of patient. These two algorithms were programmed to the laboratory developed ECG device and their usefulness was verified in laboratory environment.

  • PDF

Development of Personalized Respiratory Training Device with Real-time Feedback for Respiratory Muscle Strengthening

  • Merve Nur Uygun;Yeong-geol Bae;Yejin Choi;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.251-258
    • /
    • 2023
  • Objective: The practice of breathing exercises involves altering the depth and frequency of respiration. Strengthening respiratory muscles plays a crucial role in maintaining overall health and well-being. The efficiency of the respiratory system affects not only physical activity but also various physiological processes including cardiovascular health, lung function, and cognitive abilities. The study evaluated the reliability of the developed device for inspiratory/expiratory training using pressure sensors and Bluetooth connectivity with a smartphone application. Design: Design & development research Methods: The research methodology involved connecting a custom-made respiratory sensor to an IMT-PEP BIC Breath device. Various pressure conditions were measured, and statistical analyses were performed to assess reliability and consistency. Results showed high Intraclass Coefficient Correlation (ICC) values for both inspiratory and expiratory pressures, indicating strong test-retest reliability. The device was designed for ease of use and wireless monitoring through a smartphone app. Results: This study conducted at expiratory pressure confirmed the proper operation of the IMT/PEP breathing trainer at the specified pressure setting in the product. The pressure sensor demonstrated high test-retest reliability with an ICC value of 0.999 for both expiratory and inspiratory pressure measurements. Conclusions: The developed respiratory training device measured and monitored inspiratory and expiratory pressures, demonstrating its reliability for respiratory training. The system could be utilized to record training frequency and intensity, providing potential benefits for patients requiring respiratory interventions. Further research is needed to assess the full potential of the device in diverse populations and applications.

Development of a Model for a National Animal Health Monitoring System in Gyeongnam III. Cost Estimates of Selected Dairy Cattle Diseases (동물(젖소) 건강 Monitoring System 모델 개발 III. 목장에서 빈발하는 질병의 비용 평가)

  • 김종수;김용환;이효종;김곤섭;김충희;박정희;하대식;최민철
    • Journal of Veterinary Clinics
    • /
    • v.16 no.2
    • /
    • pp.428-438
    • /
    • 1999
  • A study was conducted to estimate cost of major dairy cattle diseases. Forty (n=40) of the 167 dairy herds in Gyeongnam (Chinju) area were stratified and selected randomly for participation in the national animal health monitoring system. Gyeongsnag University veterinarians, Gyeongnam Livestock Promotion Institute veterinarians and clinic veterinarian visited each herd once a month for a total periods of 12 months. At a each visit data on disease, production, management, finance, treatments, preventive activities, animal events, and any other relevant events were collected. Monthly and annual cost estimates of disease treatment were in computed in each herd and stratum(including cost of prevention). Results were expressed as cost per head and given separately for cows, young stock, and calves. In cows, the most expensive seven diseases entities (from the most to the least) were : (1) clinical mastitis; (2) breeding problems; (3)gastrointestinal problems; (4) multiple system problem; (5) birth problems; (6) metabolic/nutritional disease; (7) lameness. In young stock, the most costly disease were the multiple system problems, breeding problems, respiratory disease, gastrointestinal disease, and lameness. In calves, the most costly disease problems were gastrointestinal problems, respiratory disease, integumental, multiple system problems, and metabolic/nutritional problems.

  • PDF

Transcriptome profiling identifies immune response genes against porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in the lungs of piglets

  • Zhang, Jing;Wang, Jing;Zhang, Xiong;Zhao, Chunping;Zhou, Sixuan;Du, Chunlin;Tan, Ya;Zhang, Yu;Shi, Kaizhi
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.18
    • /
    • 2022
  • Background: Co-infections of the porcine reproductive and respiratory syndrome virus (PRRSV) and the Haemophilus parasuis (HPS) are severe in Chinese pigs, but the immune response genes against co-infected with 2 pathogens in the lungs have not been reported. Objectives: To understand the effect of PRRSV and/or HPS infection on the genes expression associated with lung immune function. Methods: The expression of the immune-related genes was analyzed using RNA-sequencing and bioinformatics. Differentially expressed genes (DEGs) were detected and identified by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and western blotting assays. Results: All experimental pigs showed clinical symptoms and lung lesions. RNA-seq analysis showed that 922 DEGs in co-challenged pigs were more than in the HPS group (709 DEGs) and the PRRSV group (676 DEGs). Eleven DEGs validated by qRT-PCR were consistent with the RNA sequencing results. Eleven common Kyoto Encyclopedia of Genes and Genomes pathways related to infection and immune were found in single-infected and co-challenged pigs, including autophagy, cytokine-cytokine receptor interaction, and antigen processing and presentation, involving different DEGs. A model of immune response to infection with PRRSV and HPS was predicted among the DEGs in the co-challenged pigs. Dual oxidase 1 (DUOX1) and interleukin-21 (IL21) were detected by IHC and western blot and showed significant differences between the co-challenged pigs and the controls. Conclusions: These findings elucidated the transcriptome changes in the lungs after PRRSV and/or HPS infections, providing ideas for further study to inhibit ROS production and promote pulmonary fibrosis caused by co-challenging with PRRSV and HPS.