Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.3.235

Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System  

Yoo, Wook-Jae (School of Biomedical Engineering, College of Biomedical & Health Science, Research Institute of Biomedical Engineering, Konkuk University)
Jang, Kyoung-Won (School of Biomedical Engineering, College of Biomedical & Health Science, Research Institute of Biomedical Engineering, Konkuk University)
Seo, Jeong-Ki (School of Biomedical Engineering, College of Biomedical & Health Science, Research Institute of Biomedical Engineering, Konkuk University)
Heo, Ji-Yeon (School of Biomedical Engineering, College of Biomedical & Health Science, Research Institute of Biomedical Engineering, Konkuk University)
Moon, Jin-Soo (School of Biomedical Engineering, College of Biomedical & Health Science, Research Institute of Biomedical Engineering, Konkuk University)
Park, Jang-Yeon (School of Biomedical Engineering, College of Biomedical & Health Science, Research Institute of Biomedical Engineering, Konkuk University)
Lee, Bong-Soo (School of Biomedical Engineering, College of Biomedical & Health Science, Research Institute of Biomedical Engineering, Konkuk University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.3, 2010 , pp. 235-239 More about this Journal
Abstract
In this study, we have fabricated two types of non-invasive fiber-optic respiration sensors that can measure respiratory signals during magnetic resonance (MR) image acquisition. One is a nasal-cavity attached sensor that can measure the temperature variation of air-flow using a thermochromic pigment. The other is an abdomen attached sensor that can measure the abdominal circumference change using a sensing part composed of polymethyl-methacrylate (PMMA) tubes, a mirror and a spring. We have measured modulated light guided to detectors in the MRI control room via optical fibers due to the respiratory movements of the patient in the MR room, and the respiratory signals of the fiber-optic respiration sensors are compared with those of the BIOPAC$^{(R)}$ system. We have verified that respiratory signals can be obtained without deteriorating the MR image. It is anticipated that the proposed fiber-optic respiration sensors would be highly suitable for respiratory monitoring during surgical procedures performed inside an MRI system.
Keywords
Fiber-optic sensor; Magnetic resonance imaging; Plastic optical fiber; Respiration sensor; Thermochromic pigment;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 M. Folke, L. Cernerud, M. Ekstrom, and B. Hok, “Critical review of non-invasive respiratory monitoring in medical care,” Med. Biol. Eng. Comput. 41, 377-383 (2003).   DOI   ScienceOn
2 S. K. Lemieux and G. H. Glover, “An infrared device for monitoring the respiration of small rodents during magnetic resonance imaging,” J. Magn. Reson. Imaging 6, 561-564 (1996).   DOI   ScienceOn
3 J. D. Jonckheere, M. Jeanne, A. Grillet, S. Weber, P. Chaud, R. Logier, and J. L. Weber, “OFSETH: optical fibre embedded into technical textile for healthcare, an efficient way to monitor patient under magnetic resonance imaging,” in Proc. IEEE Eng. Med. Biol. Soc. (Lyon, France, Aug. 2007), pp. 3950-3953.
4 K. Krebber, A. Grillet, J. Witt, M. Schukar, D. Kinet, T. Thiel, F. Pirotte, and A. Depré, “Optical fibre sensors embedded into technical textile for healthcare (OFSETH),” in Proc. 16th Int. Conf. on Plastic Optical Fibres (Turin, Italy, Sep. 2007), pp. 227-233.
5 C. Larsson, L. Davidsson, P. Lundin, G. Gustafsson, and M. Vegfors, “Respiratory monitoring during MR imaging,” Acta Radiol. 40, 33-36 (1999).
6 B. Lee, D. H. Cho, G.-R. Tack, S.-C. Chung, J. H. Yi, J. H. Jun, S. Son, and S. Cho, “Feasibility study of development of plastic optical fiber temperature sensor using thermosensitive clouding material,” Jpn. J. Appl. Phys. 45, 4234-4236 (2006).   DOI
7 M. Vegfors, L.-G. Lindberg, H. Pettersson, and P. A. Oberg, “Presentation and evaluation of a new optical sensor for respiratory rate monitoring,” Int. J. Clin. Monit. Comput. 11, 151-156 (1994).   DOI
8 Y. H. Kim, M. J. Kim, M.-S. Park, J.-H. Jang, and B. H. Lee, “Hydrogen sensor based on a palladium-coated longperiod fiber grating pair,” J. Opt. Soc. Korea 12, 221-225 (2008).   DOI   ScienceOn
9 H. Segawa, E. Ohnishi, Y. Arai, and K. Yoshida, “Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye,” Sens. Actuators B 94, 276-281 (2003).   DOI   ScienceOn
10 A. T. Augousti, F.-X. Maletras, and J. Mason, “The use of a figure-of-eight coil for fibre optic respiratory plethysmography: geometrical analysis and experimental characterization,” Opt. Fiber Technol. 11, 346-360 (2005).   DOI   ScienceOn
11 P. A. Oberg, H. Pettersson, L.-G. Lindberg, and M. Vegfors, “Evaluation of a new fibre-optic sensor for respiratory rate measurements,” Proc. SPIE 2331, 98-109 (1994).
12 F. Baldini, A. Falai, A. R. D. Gaudio, D. Landi, A. Lueger, A. Mencaglia, D. Scherr, and W. Trettnak, “Continuous monitoring of gastric carbon dioxide with optical fibres,” Sens. Actuators B 90, 132-138 (2003).   DOI   ScienceOn
13 R. D. Rempt and C. Ramon, “A fiber optic sensor detection of cardiac magnetic field,” Proc. SPIE 1886, 181-185 (1993).   DOI
14 S.-C. Chung, J.-H. Kwon, B. Lee, J.-H. Yi, H.-J. Kim, and G.-R. Tack, “Development of a magnetic-resonance-compatible photoplethysmograph amplifier for behavioral and emotional studies,” Behavior Research Methods 40, 342-346 (2008).   DOI
15 A. C. S. Brau, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Fiber-optic stethoscope: a cardiac monitoring and gating system for magnetic resonance microscopy,” Magn. Reson. Med. 47, 314-321 (2002).   DOI   ScienceOn
16 D.-W. Lim, J.-R. Park, M.-H. Choi, S.-J. Lee, J.-S. Choi, H.-S. Kim, J.-H. Yi, G.-R. Tack, B. Lee, and S.-C. Chung, “Development of a magnetic resonance-compatible galvanic skin response measurement system using optic signal,” Int. J. Neurosci. 119, 1337-1345 (2009).   DOI   ScienceOn
17 S. Sade and A. Katzir, “Fiberoptic infrared radiometer for real time in situ thermometry inside an MRI system,” Magn. Reson. Imaging 19, 287-290 (2001).   DOI   ScienceOn
18 C. Davis, A. Mazzolini, and D. Murphy, “A new fibre sensor for respiratory monitoring,” Austral. Phys. Eng. Sci. Med. 20, 214-219 (1997).
19 B. Lee, G.-R. Tack, S.-C. Chung, J.-H. Yi, S. Kim, and H. Cho, “Fiber-optic temperature sensor using a liquid crystal film for laser-induced interstitial thermotherapy,” J. Korean Phys. Soc. 46, 1347-1351 (2005).
20 B. Lee, W. Y. Choi, and J. K. Walker, “Polymer-polymer miscibility study for plastic gradient index optical fiber,” Polymer Eng. Sci. 40, 1996-1999 (2000).   DOI   ScienceOn
21 Q. Chen, R. O. Claus, W. B. Spillman, F. J. Arregui, I. R. Matias, and K. L. Cooper, “Optical fiber sensors for breathing diagnostics,” Proc. SPIE 4616, 14-20 (2002).   DOI