• Title/Summary/Keyword: resource-based learning

Search Result 419, Processing Time 0.023 seconds

Construction of Korean Knowledge Base Based on Machine Learning from Wikipedia (위키백과로부터 기계학습 기반 한국어 지식베이스 구축)

  • Jeong, Seok-won;Choi, Maengsik;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.1065-1070
    • /
    • 2015
  • The performance of many natural language processing applications depends on the knowledge base as a major resource. WordNet, YAGO, Cyc, and BabelNet have been extensively used as knowledge bases in English. In this paper, we propose a method to construct a YAGO-style knowledge base automatically for Korean (hereafter, K-YAGO) from Wikipedia and YAGO. The proposed system constructs an initial K-YAGO simply by matching YAGO to info-boxes in Wikipedia. Then, the initial K-YAGO is expanded through the use of a machine learning technique. Experiments with the initial K-YAGO shows that the proposed system has a precision of 0.9642. In the experiments with the expanded part of K-YAGO, an accuracy of 0.9468 was achieved with an average macro F1-measure of 0.7596.

Comparison of Wave Prediction and Performance Evaluation in Korea Waters based on Machine Learning

  • Heung Jin Park;Youn Joung Kang
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.18-29
    • /
    • 2024
  • Waves are a complex phenomenon in marine and coastal areas, and accurate wave prediction is essential for the safety and resource management of ships at sea. In this study, three types of machine learning techniques specialized in nonlinear data processing were used to predict the waves of Korea waters. An optimized algorithm for each area is presented for performance evaluation and comparison. The optimal parameters were determined by varying the window size, and the performance was evaluated by comparing the mean absolute error (MAE). All the models showed good results when the window size was 4 or 7 d, with the gated recurrent unit (GRU) performing well in all waters. The MAE results were within 0.161 m to 0.051 m for significant wave heights and 0.491 s to 0.272 s for periods. In addition, the GRU showed higher prediction accuracy for certain data with waves greater than 3 m or 8 s, which is likely due to the number of training parameters. When conducting marine and offshore research at new locations, the results presented in this study can help ensure safety and improve work efficiency. If additional wave-related data are obtained, more accurate wave predictions will be possible.

Prediction models of rock quality designation during TBM tunnel construction using machine learning algorithms

  • Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.507-515
    • /
    • 2024
  • An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.

NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators

  • Jeman Park;Misun Yu;Jinse Kwon;Junmo Park;Jemin Lee;Yongin Kwon
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.851-864
    • /
    • 2024
  • Deep learning (DL) has significantly advanced artificial intelligence (AI); however, frameworks such as PyTorch, ONNX, and TensorFlow are optimized for general-purpose GPUs, leading to inefficiencies on specialized accelerators such as neural processing units (NPUs) and processing-in-memory (PIM) devices. These accelerators are designed to optimize both throughput and energy efficiency but they require more tailored optimizations. To address these limitations, we propose the NEST compiler (NEST-C), a novel DL framework that improves the deployment and performance of models across various AI accelerators. NEST-C leverages profiling-based quantization, dynamic graph partitioning, and multi-level intermediate representation (IR) integration for efficient execution on diverse hardware platforms. Our results show that NEST-C significantly enhances computational efficiency and adaptability across various AI accelerators, achieving higher throughput, lower latency, improved resource utilization, and greater model portability. These benefits contribute to more efficient DL model deployment in modern AI applications.

The Effects of RSM-Based Astronomical Observation Program on Astronomical Spatial Concept and Self-Directed Learning for the Scientific Gifted Students (과학영재 학생을 위한 RSM 기반 천체관측 프로그램이 천문학적 공간개념과 자기주도적 학습능력에 미치는 효과)

  • Shin, Myeung-Ryeul;Lee, Yong-Seob
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.993-1009
    • /
    • 2011
  • The purpose of this study was to find the effects of RSM-based astronomical observation program about Astronomical Spatial Concept and Self-Directed Learning for the Scientific Gifted Students. For this purpose, this research developed RSM-based astronomical observation program. This program was totally consisted 10 lessen. there was 3 part in this program. It contained Preparation Stage (step 1-2), Observation Stage (step 3-8), Clean up Stage (step 9-10). To find the effects of RSM-based astronomical observation program on Astronomical Spatial Concept and Self-Directed Learning for Scientific Gifted Students. 20 participants was selected. these students were attended at a scientific gifted class(5th grade) of an elementary school located in Ulsan. First, Astronomical Spatial Concept was used to find the effect of the Astronomical Observation program based RSM. And the results were analyzed by SPSSWIN 18.0. The results of this study were as follows. First, RSM-based astronomical observation program was a positive effects on Astronomical Spatial Concept of the Scientific Gifted Students (t=3,875, p=.001). Second, RSM-based astronomical observation program was a positive effects on Self-Directed Learning of the Scientific Gifted Students (t=5.783, p=.000). According to this research, RSM-based astronomical observation program was verified to improve Astronomical Spatial Concept and Self-Directed Learning on the Scientific Gifted Students. It will be contribute on the curriculum construction of the gifted school or gifted class.

Design of Efficient Edge Computing based on Learning Factors Sharing with Cloud in a Smart Factory Domain (스마트 팩토리 환경에서 클라우드와 학습된 요소 공유 방법 기반의 효율적 엣지 컴퓨팅 설계)

  • Hwang, Zi-on
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2167-2175
    • /
    • 2017
  • In recent years, an IoT is dramatically developing according to the enhancement of AI, the increase of connected devices, and the high-performance cloud systems. Huge data produced by many devices and sensors is expanding the scope of services, such as an intelligent diagnostics, a recommendation service, as well as a smart monitoring service. The studies of edge computing are limited as a role of small server system with high quality HW resources. However, there are specialized requirements in a smart factory domain needed edge computing. The edges are needed to pre-process containing tiny filtering, pre-formatting, as well as merging of group contexts and manage the regional rules. So, in this paper, we extract the features and requirements in a scope of efficiency and robustness. Our edge offers to decrease a network resource consumption and update rules and learning models. Moreover, we propose architecture of edge computing based on learning factors sharing with a cloud system in a smart factory.

Secret Key-Dimensional Distribution Mechanism Using Deep Learning to Minimize IoT Communication Noise Based on MIMO (MIMO 기반의 IoT 통신 잡음을 최소화하기 위해서 딥러닝을 활용한 비밀키 차원 분배 메커니즘)

  • Cho, Sung-Nam;Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.23-29
    • /
    • 2020
  • As IoT devices increase exponentially, minimizing MIMO interference and increasing transmission capacity for sending and receiving IoT information through multiple antennas remain the biggest issues. In this paper, secret key-level distribution mechanism using deep learning is proposed to minimize MIMO-based IoT communication noise. The proposed mechanism minimizes resource loss during transmission and reception process by dispersing IoT information sent and received through multiple antennas in batches using deep learning. In addition, the proposed mechanism applied a multidimensional key distribution processing process to maximize capacity through multiple antenna multiple stream transmission at base stations without direct interference between the APs. In addition, the proposed mechanism synchronizes IoT information by deep learning the frequency of use of secret keys according to the number of IoT information by applying the method of distributing secret keys in dimension according to the number of frequency channels of IoT information in order to make the most of the multiple antenna technology.

Edge Computing Model based on Federated Learning for COVID-19 Clinical Outcome Prediction in the 5G Era

  • Ruochen Huang;Zhiyuan Wei;Wei Feng;Yong Li;Changwei Zhang;Chen Qiu;Mingkai Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.826-842
    • /
    • 2024
  • As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. The COVID-19 pandemic has posed immense challenges to the global health system. This study proposes an FL-supported edge computing model based on federated learning (FL) for predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to address the challenges posed by the pandemic, such as the need for sophisticated predictive models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the FATE framework, known for its privacy-preserving technologies, to enhance predictive precision while ensuring data privacy and effectively managing data heterogeneity. The model's ability to generalize across diverse datasets and its adaptability in real-world clinical settings are highlighted by the use of SHAP values, which streamline the training process by identifying influential features, thus reducing computational overhead without compromising predictive precision. The study demonstrates that the proposed model achieves comparable precision to specific machine learning models when dataset sizes are identical and surpasses traditional models when larger training data volumes are employed. The model's performance is further improved when trained on datasets from diverse nodes, leading to superior generalization and overall performance, especially in scenarios with insufficient node features. The integration of FL with edge computing contributes significantly to the reliable prediction of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare technology by providing a practical solution for early intervention and personalized treatment plans, leading to improved patient outcomes and efficient resource allocation during public health crises.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.

우리 나라 중소기업의 전략변화와 기술능력 학습 - 우리나라 전자부품 산업에 대한 사례연구 -

  • 이병헌;김영배
    • Proceedings of the Technology Innovation Conference
    • /
    • 1998.06a
    • /
    • pp.57-90
    • /
    • 1998
  • This study attempts to explore the evolution paths of Korean SMEs'strategies and their technological teaming processes. Several different evolution paths are identified based on a dynamic strategic group analysis of 115 SMEs'strategy in the Korean electronic component industry for the period of 1990-1995. Further, inadept case analyses on technological learning processes in 5 firms are undertaken. Major findings of this study can be summarized as follows : 1) There are three dominant evolution paths in SMEs'strategy. First path indicates the evolution from a subcontractor or petty imitator group(a strategic group with the narrow product/market domain and the low level of accumulated resource/capabilities) into an innovator group(a strategic group with the narrow domain but high level of technological capability) by accumulating technological capabilities. Second, some firms move from a subcontractor group into a generalizer group(a strategic group with broad product/market domain but relatively low level of technological capability) by simply adding product lines. Third path involves firms which evolve from a subcontractor group into a production focus group(a strategic group with high level of production capability) by investing in production capabilities. 2) An in-depth case analysis shows those who succeeded in technological learning are managed by CEOs, who have technological expertise and strategic vision, and have made an effort to establish management practices to support innovation, such employee educational program, performance-based reward system, etc. The successful firms also aggressively pursue diverse external linkages with outside technology sources to learn product and process technologies. Fiendly, this study discusses several implications of the findings for the theoretical development and strategic management of small firms in Korea.

  • PDF