• 제목/요약/키워드: resonant motion

검색결과 149건 처리시간 0.258초

집전계의 동특성 Simulation에 관한 연구 (Simulation of Catenary-Pantograph Dynamics)

  • 김정수;박성훈;허신;경진호;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.550-557
    • /
    • 1999
  • Results of the dynamic simulation on KTX catenary and catenary-pantograph interface are presented. Simulation programs based on finite element and finite difference models of the catenary are developed, while the pantograph is modeled as a linear 3-degree-of-freedom system. The catenary motion dynamics are primarily determined by the transmission and reflection of the propagating disturbance wave at the hanger and span boundaries. On the other hand, the catenary-pantograph contact characteristics are primarily influenced by the movement of the pantograph across the hanger and span boundaries, the amount of damping present in the contact wire, and the resonant frequencies of the pantograph.

  • PDF

Observation of Parametric Resonance in a Magneto-Optical Trap

  • Jhe, Won-Ho;Noh, Heung-Ryoul;Kim, Ki-Hwan;Ha, Hyun-Ji
    • Journal of the Optical Society of Korea
    • /
    • 제7권2호
    • /
    • pp.119-125
    • /
    • 2003
  • We demonstrate parametric resonance in a magneto-optical trap. When we modulate the intensity of the cooling laser at about twice the resonant frequency of the trap, the atoms in the trap are divided into two parts and oscillate with 180 degree phase difference with the finite length due to nonlinearity of the trap potential. These are the effects of general nonlinear dynamics, called the Hopf bifurcation, or limit cycle motion. The amplitude and the phase of the oscillations are measured and compared with the theoretical calculations based on simple Doppler cooling theory. The experimental results are in excellent agreement with the simulation results based on the simple Doppler cooling theory.

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

근사기법을 활용한 공진형 파력발전 부이의 발전량 추정 및 최적설계 (Power Estimation and Optimum Design of a Buoy for the Resonant Type Wave Energy Converter Using Approximation Scheme)

  • 고혁준;유원선;조일형
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.85-92
    • /
    • 2013
  • This paper deals with the resonant type of a WEC (wave energy converter) and the determination method of its geometric parameters which were obtained to construct the robust and optimal structure, respectively. In detail, the optimization problem is formulated with the constraints composed of the response surfaces which stand for the resonance period(heave, pitch) and the meta center height of the buoy. Use of a signal-to-noise ratio calculated from normalized multi-objective results with the weight factor can help to select the robust design level. In order to get the sample data set, the motion responses of the power buoy were analyzed using the BEM (boundary element method)-based commercial code. Also, the optimization result is compared with a robust design for a feasibility study. Finally, the power efficiency of the WEC with the optimum design variables is estimated as the captured wave ratio resulting from absorbed power which mainly related to PTO (power take off) damping. It could be said that the resultant of the WEC design is the economical optimal design which satisfy the given constraints.

인가 전압에 따른 초소형 압전 리니어 모터의 동특성 (Dynamic Properties of Tiny Piezoelectric linear Motor by Applied Voltage)

  • 유경호;고현필;강종윤;김현재;고태국;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.62-63
    • /
    • 2005
  • Recently, a tiny piezoelectric linear motor using a vibration made of the transducer has been invented. The motor consists of a shaft, mobile element, and piezoelectric transducer using a piezoelectric radial mode bimorph disk. The fringe of the bimorph disk is fixed firmly which means this area has no degree of freedom. Therefore, the radial mode of the tranducer transfers to the flexurd mode. The mobile elements move along the shaft by the impact force generated by the flexurd mode of the piezoelectric transducer. The piezoelectric ceramic disks have thickness of 0.1 mm and diameter of 3.5 mm. The elastic disk is introduced between two disks of the ceramic, which has thickness of 0.1 mm and diameter of 3.8 mm. The fringe of the elastic disk is fixed by a brass cylinder which height is 1.2 mm. The Pyrex shaft is used which has diameter of 1 mm and height of 10 mm. The motors are operated at their resonant frequencies. The dynamic properties of the motor have been intensively measured and analyzed according to the applied voltage wave forms at the resonant frequencies. As the sawtooth and rectangular voltage waves are applied, the velocity, the thrust force, and the velocity dependence of the mobile position are measured. The dynamic characteristics are also analyzed within a period of each wave using laser vibrometer. The velocity of the mobile is moderately constant along the shaft. The better dynamic characteristics are obtained in the case of applying the rectangular wave.

  • PDF

모세관 작용에 의한 콘택트 렌즈의 운동 모델 (Model on the Capillary Action-Induced Dynamics of Contact Lens)

  • 김대수
    • 한국안광학회지
    • /
    • 제6권2호
    • /
    • pp.85-97
    • /
    • 2001
  • 눈물 층을 사이에 두고 각막 위에 부착되어 있는 렌즈(하드렌즈)에는 모세관작용에 따른 장력이 렌즈가장자리에 균일하게 방사형으로 향하여 작용한다. 순목등에 의한 충격으로 평형상태의 렌즈가 평형 위치에서 벗어나게 되면 눈물층의 간격에 변화가 발생하고 이 변화에 의해 불균일 모세관작용에 기인하는 장력에 따라 렌즈에는 복원력이 발생하고 이 힘에 의해 렌즈는 감쇄운동(진동)을 하게 된다. 이러한 복원력을 계산하고 렌즈의 운동을 예측할 수 있는 미분방정식과 컴퓨터프로그램을 수립하였으며 이 컴퓨터 모델을 사용하여 렌즈의 구경, 베이스 커브, 눈물 층의 두께 등의 변수가 렌즈의 운동에 미치는 영향을 모사(模寫)하였다. 눈물층의 점성에 의한 마찰력이 관성력에 비해 크기 때문에 렌즈는 진동을 하지 않고 시간의 경과에 따라 일률적으로 변위가 감소하는 운동양상을 나타내고 있으며 렌즈의 구경이 증가할수록, 눈물층의 두께가 얇아질수록 복원력이 증가하며 따라서 렌즈가 원위치로 되돌아오는데 걸리는 시간이 짧아지고 있다. 그러나 렌즈의 베이스커브는 그 값이 특정 값을 가질 때 원위치 도달 시간이 최소가 된다. 렌즈의 공진진동수는 눈물층의 두께가 증가할수록 렌즈구경이 감소할수록 낮아지고 있으며 베이스커브가 특정 값을 가질 때 공진진동수 역시 최대가 된다. 실제로 콘택트렌즈를 착용한 상태에서 렌즈의 공진진동수와 동일한 진동수의 외부 충격이 렌즈에 가해지는 경우 급격한 렌즈의 상하 또는 좌우 진동이 예상되며 따라서 렌즈가 탈착 된다든지 또는 렌즈의 형상변형으로 인해 각막에 통증이 발생할 수도 있을 것이다. 고함수(高含水) 소프트렌즈와 강은 diaphragm 그 자체는 탄성이 거의 없다. 그러나 함수 소프트렌즈가 각막 상에 눈물 층을 사이에 두고 부착되어 있는 경우에는 눈물의 표면 장력에 의해 탄성이 유기(誘起)될 수 있으므로 진동의 영향이 있을 것으로 본다.

  • PDF

Determination of critical excitation in seismic analysis of structures

  • Kamgar, Reza;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.875-891
    • /
    • 2015
  • Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구 (An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer)

  • 이승배;권오섭;이창준
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.