• 제목/요약/키워드: resonance wavelength

검색결과 199건 처리시간 0.029초

실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성 (Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film)

  • 조성훈;이경석
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.637-643
    • /
    • 2009
  • In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.

Si RFIC상에서 주기적 구조를 이용한 코프레너형 전송선로의 기본특성연구 (A Study on Basic Characteristics of a Coplanar-type Transmission Line Employing Periodic Structure on Si RFIC)

  • 조한나;박영배;윤영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.964-973
    • /
    • 2008
  • In this study, a short-wavelength coplanar-type transmission line employing periodic ground structure (PGS) was developed for application to miniaturized on-chip passive component on Si Radio Frequency Integrated Circuit (RFIC). The transmission line employing PGS showed shorter wavelength and lower characteristic impedance than conventional coplanar-type transmission line. The wavelength of the transmission line employing PGS structure was 57 % of the conventional coplanar-type transmission line on Si substrate. Using the theoretical analysis. basic characteristics of the transmission line employing PGS (e.g., bandwidth. loss, impedance, and resonance characteristics) were also investigated in order to evaluate its suitability for application to a development of miniaturized passive on-chip components on silicon RFIC. According to the results. the bandwidth of the transmission line employing PGS was more than 895 GHz as long as T is less than 20${\mu}m$, and the resonance characteristic was observed in 1239 GHz, which indicates that the PPGM structure is a promising candidate for application to a development of miniaturized on-chip passive components on Si RFIC.

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

  • Keum, Kyoseung;Piao, Haiyan;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • 제18권1호
    • /
    • pp.46-51
    • /
    • 2018
  • In this paper, a planar printed hybrid short/open-ended slot antenna with capacitive coupling feed strips is proposed for hepta-band mobile applications. The proposed antenna is comprised of a slotted ground plane on the top plane and two capacitive coupling feed strips with a chip inductor on the bottom plane. At the low frequency band, the short-ended long slot fed by strip 1 generates its half-wavelength resonance mode, whereas the T-shaped open ended slot fed by strip 2 generates its quarter-wavelength resonance mode for the high frequency band. The antenna provides a wide bandwidth covering GSM850/GSM900/DCS/PCS/UMTS/LTE2300/LTE2500 operation bands. Moreover, the antenna occupies a small volume of $15mm{\times}50mm{\times}1mm$. The operating principle of the proposed antenna and the simulation/measurement results are presented and discussed.

라이다 시스템을 이용한 하층 대류권 오존농도 측정 (Ozone Monitoring in the Lower Tropospheric Atmosphere by LIDAR System)

  • 최성철;차형기;김덕현;김영상
    • 한국대기환경학회지
    • /
    • 제17권5호
    • /
    • pp.385-393
    • /
    • 2001
  • We have developed a Differential Absortion LIDAR (DIAL) method for the measurement of lower tropospheric ozone concentration. We used two laser beams from quadrupled Nd:YAG (266 nm) for the resonance wavelength and dye lasers (299.5 nm) for non -resonance wavelength. Aerosol extinction coefficients in the lower troposphere was computed by both Klett and Slope methods. To correct the SIN (Signal -Induced Noise) effect caused by photo detector, we subtracted a new-fitted baseline on the background part of a LIDAR signal, after the subtraction of the DC level. This is because SIN can be treated as an exponentially decaying tail. Using theme results, ozone profiles were obtained approximately 2km at daytime and 3km at nighttime. We compared the results derided by the Slope method with those measured by UV spectrometer. The computed results are in mostly good agreement with experimental results. In the measurement of the vertical layer, we observed the variation of the ozone profiles around the top mixed layer.

  • PDF

Optoelectronic and electronic applications of graphene

  • Yang, Hyun-Soo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.67.2-67.2
    • /
    • 2012
  • Graphene is expected to have a significant impact in various fields in the foreseeable future. For example, graphene is considered to be a promising candidate to replace indium tin oxide (ITO) as transparent conductive electrodes in optoelectronics applications. We report the tunability of the wavelength of localized surface plasmon resonance by varying the distance between graphene and Au nanoparticles [1]. It is estimated that every nanometer of change in the distance between graphene and the nanoparticles corresponds to a resonance wavelength shift of ~12 nm. The nanoparticle-graphene separation changes the coupling strength of the electromagnetic field of the excited plasmons in the nanoparticles and the antiparallel image dipoles in graphene. We also show a hysteresis in the conductance and capacitance can serve as a platform for graphene memory devices. We report the hysteresis in capacitance-voltage measurements on top gated bilayer graphene which provide a direct experimental evidence of the existence of charge traps as the cause for the hysteresis [2]. By applying a back gate bias to tune the Fermi level, an opposite sequence of switching with the different charge carriers, holes and electrons, is found [3]. The charging and discharging effect is proposed to explain this ambipolar bistable hysteretic switching.

  • PDF

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin;Huang, Tzu-Hsuan;Chiang, Chia-Chin;Wu, Chao-Wei
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1399-1404
    • /
    • 2018
  • This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.

Extraordinary Optical Transmission and Enhanced Magneto-optical Faraday Effect in the Cascaded Double-fishnet Structure with Periodic Rectangular Apertures

  • Lei, Chengxin;Man, Zhongsheng;Tang, Shaolong
    • Current Optics and Photonics
    • /
    • 제4권2호
    • /
    • pp.134-140
    • /
    • 2020
  • A significant enhancement of the magneto-optical Faraday rotation and extraordinary optical transmission (EOT) in the cascaded double-fishnet (CDF) structure with periodic rectangular apertures is theoretically predicted by using the extended finite difference time domain (FDTD) method. The results demonstrate that the transmittance spectrum of the CDF structure has two EOT resonant peaks in a broad spectrum spanning visible to near-infrared wavebands, one of them coinciding with the enhanced Faraday rotation and large figure of merit (FOM) at the same wavelength. It is most important that the resonant position and intensity of the transmittance, Faraday rotation and FOM can be simply tailored by adjusting the incident wavelength, the thickness of the magnetic layer, and the offset between two metallic rectangular apertures, etc. Furthermore, the intrinsic physical mechanism of the resonance characteristics of the transmittance and Faraday rotation is thoroughly studied by investigating the electromagnetic field distributions at the location of resonance. It is shown that the transmittance resonance is mainly determined by different hybrid modes of surface plasmons (SPs) and plasmonic electromagnetically induced transparency (EIT) behavior, and the enhancement of Faraday rotation is mostly governed by the plasmonic electromagnetically induced absorption (EIA) behavior and the conversion of the transverse magnetic (TM) mode and transverse electric (TE) mode in the magnetic dielectric layer.

광섬유-평면도파로 광 결합기를 이용한 광 필터 제작과 특성 측정 (Fabrication and optical properties measurement of the optical filters utilizing fiber-to-planar waveguide coupler)

  • 김광택;이소영;손경락;이종훈;송재원;이상재;김시홍;강신원
    • 한국광학회지
    • /
    • 제10권5호
    • /
    • pp.419-423
    • /
    • 1999
  • 측면 연마된 단일모드 광섬유와 다중모드 폴리머 평면도파로 사이의 소산장 결합을 이용한 광필터를 제작하고 그 특성을 측정하였다. 소자의 편광의존성을 줄일 수 있는 방법 제안하였으며 실험으로 검증하였다. 그리고 광필터의 공진파장과 여과 깊이는 평면도파로의 두께와 연마깊이로서 적절히 선택할 수 있음을 실험으로 보였다. 광섬유 연마과정, 폴리머 평면도파로 제작 등을 포함한 소자제작 공정을 소개하였다. 제작된 광필터의 3㏈대역폭은 15nm, 삽입손실은 0.2㏈, 편광에 따른 공진 파장의 차이는 2nm 이하였다. 그리고 주위온도에 의한 공진파장의 이동거리는 -0.35nm/$^{\circ}C$로 측정되었다.

  • PDF

CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution

  • Ock, Kwang-Su;Ganbold, Erdene-Ochir;Jeong, Sae-Ro-Mi;Seo, Ji-Hye;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3610-3613
    • /
    • 2011
  • CdS nanoparticles (NPs) were synthesized in an aqueous phase in order to investigate their spectral behaviors as efficient fluorescence resonance energy transfer (FRET) donors for various organic dye acceptors. Our prepared CdS NPs exhibiting strong and broad emission spectra between 480-520 nm were able to transfer energy in a wide wavelength region from green to red fluorescence dyes. Rhodamine 6G (Rh6G), rhodamine B (RhB), and sulforhodamine 101 acid (Texas red) were tested as acceptors of the energy transfer from the CdS NPs. The three dyes and synthesized CdS NPs exhibited good FRET behaviors as acceptors and donors, respectively. Energy transfers from the CdS NPs and organic Cy3 dye were compared to the same acceptor Texas red dye at different concentrations. Our prepared CdS NPs appeared to exhibit better FRET behaviors comparable to those of the Cy3 dye. These CdS NPs in an aqueous solution may be efficient FRET donors for various organic dyes in a wide wavelength range between green and red colors.

항만부진동 해석을 위한 적정 유한요소 크기에 대한 소고 (A Note on the Proper Size of a Finite Element for Analysis of Harbor Resonance Problems)

  • 정원무;박우선
    • 한국해안해양공학회지
    • /
    • 제14권1호
    • /
    • pp.86-93
    • /
    • 2002
  • 항만부진등 해석에 사용되는 유한요소의 적정 크기를 검토하기 위해 완전개방 직사각형 항만에 대해서 다양한 크기의 요소를 사용한 수치실험을 실시하였다. 수치실험 결과, 공진주기와 증폭비의 허용 오차율을 모두 2%로 하는 경우 파장당 9개, 1%로 하는 경우 12개의 요소가 필요한 것으로 나타났다. 또한, 요소 수의 증가에 따라 공진주기의 오차율은 선형적으로, 증폭비의 오차는 진동하면서 감소하였으며, 요소 수를 9개보다 적게 하는 경우 증폭비의 오차가 상대적으로 크게 증가하였다