• 제목/요약/키워드: resonance response

검색결과 769건 처리시간 0.023초

Effect of Pulsed Radiofrequency Neuromodulation on Clinical Improvements in the Patients of Chronic Intractable Shoulder Pain

  • Jang, Ji Su;Choi, Hyuk Jai;Kang, Suk Hyung;Yang, Jin Seo;Lee, Jae Jun;Hwang, Sung Mi
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권6호
    • /
    • pp.507-510
    • /
    • 2013
  • Objective : The aim of this study was to evaluate effect of pulsed radiofrequency (PRF) neuromodulation of suprascpaular nerve (SSN) in patients with chronic shoulder pain due to adhesive capsulitis and/or rotator cuff tear. Methods : The study included 11 patients suffering from chronic shoulder pain for at least 6 months who were diagnosed with adhesive capsulitis (n=4), rotator cuff tear (n=5), or adhesive capsulitis+rotator cuff tear (n=2) using shoulder magnetic resonance imaging or extremity ultrasonography. After a favorable response to a diagnostic suprascapular nerve block twice a week (pain improvement >50%), PRF neuromodulation was performed. Shoulder pain and quality of life were assessed using a Visual Analogue Scale (VAS) and the Oxford Shoulder Score (OSS) before the diagnostic block and every month after PRF neuromodulation over a 9-month period. Results : The mean VAS score of 11 patients before PRF was $6.4{\pm}1.49$, and the scores at 6-month and 9 month follow-up were $1.0{\pm}0.73$ and $1.5{\pm}1.23$, respectively. A significant pain reduction (p<0.001) was observed. The mean OSS score of 11 patients before PRF was $22.7{\pm}8.1$, and the scores at 6-month and 9 month follow-up were $41.5{\pm}6.65$ and $41.0{\pm}6.67$, respectively. A significant OSS improvement (p<0.001) was observed. Conclusion : PRF neuromodulation of the suprascapular nerve is an effective treatment for chronic shoulder pain, and the effect was sustained over a relatively long period in patients with medically intractable shoulder pain.

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

Influence of viscous effects on numerical prediction of motions of SWATH vessels in waves

  • Brizzolara, Stefano;Bonfiglio, Luca;Medeiros, Joao Seixas De
    • Ocean Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.219-236
    • /
    • 2013
  • The accurate prediction of motion in waves of a marine vehicle is essential to assess the maximum sea state vs. operational requirements. This is particularly true for small crafts, such as Autonomous Surface Vessels (ASV). Two different numerical methods to predict motions of a SWATH-ASV are considered: an inviscid strip theory initially developed at MIT for catamarans and then adapted for SWATHs and new a hybrid strip theory, based on the numerical solution of the radiation forces by an unsteady viscous, non-linear free surface flow solver. Motion predictions obtained by the viscous flow method are critically discussed against those obtained by potential flow strip theory. Effects of viscosity are analyzed by comparison of sectional added mass and damping calculated at different frequencies and for different sections, RAOs and motions response in irregular waves at zero speed. Some relevant conclusions can be drawn from this study: influence of viscosity is definitely non negligible for SWATH vessels like the one presented: amplitude of the pitch and heave motions predicted at the resonance frequency differ of 20% respectively and 50%; in this respect, the hybrid method with fully non-linear, viscous free surface calculation of the radiation forces turns out to be a very valuable tool to improve the accuracy of traditional strip theories, without the burden of long computational times requested by fully viscous time domain three dimensional simulations.

Studies on the influence factors of wind dynamic responses on hyperbolic cooling tower shells

  • ZHANG, Jun-Feng;LIU, Qing-Shuai;GE, Yao-Jun;ZHAO, Lin
    • Structural Engineering and Mechanics
    • /
    • 제72권5호
    • /
    • pp.541-555
    • /
    • 2019
  • Wind induced dynamic responses on hyperbolic cooling tower (HCT) shells are complicated functions of structure and wind properties, such as the fundamental frequency fmin, damping ratio ζ, wind velocity V, correlationship in meridian direction and so on, but comprehensions on the sensitivities of the dynamic responses to these four factors are still limited and disagree from each other. Following the dynamic calculation in time domain, features of dynamic effects were elaborated, focusing on the background and resonant components σB and σR, and their contributions to the total rms value σT. The σR is always less than σB when only the maximum σT along latitude is concerned and the contribution of σR to σT varies with responses and locations, but the σR couldn't be neglected for structural design. Then, parameters of the above four factors were artificially adjusted respectively and their influences on the gust responses were illustrated. The relationships of σR and the former three factors were expressed by fitted equations which shows certain differences from the existing equations. Moreover, a new strategy for wind tunnel tests aiming at surface pressures and the following dynamic calculations, which demands less experiment equipment, was proposed according to the influence from meridian correlationship.

개 경추 섬유연골성 색전성 척수증에 대한 전통 수의학적 치료 (Therapy by traditional veterinary medicine in a case with canine fibrocartilaginous embolic myelopathy)

  • 박형진;임수정;이선희;정대욱;최준혁;송근호;이영원;최호정;김덕환
    • 대한수의학회지
    • /
    • 제51권1호
    • /
    • pp.73-77
    • /
    • 2011
  • A 6-year old, female, Schnauzer dog with chief complaint of tetraparesis was referred to the Veterinary Medicine Teaching Hospital of Chungnam National University. On physical examination, neulologic examinations and magnetic resonance imaging, this patient was diagnosed into fibrocartilaginous embolic myelopathy. Although conventional treatment such as prednisolone, cefotaxime and enrofloxacin revealed no improvement, this patient showed favorable therapeutic response by combined therapy with aquapuncture with prednisolone, modified moxibustion, herbal medicine and massage.

등가회로를 이용한 후면추 고정형 Tonpilz 트랜스듀서의 공진 특성 해석 (Analysis of the Resonant Characteristics of a Tonpilz Transducer with a Fixed Tail Mass by the Equivalent Circuit Approach)

  • 김진욱;김원호;조치영;노용래
    • 한국음향학회지
    • /
    • 제30권6호
    • /
    • pp.344-352
    • /
    • 2011
  • 본 논문에서는 후면추가 탄성체에 의해 고정된 Tonpilz 트랜스듀서의 공진 특성을 등가회로를 이용하여 연구하였다. 후면추가 고정됨으로 인해 발생하는 추가적인 공진특성을 나타낼 수 있는 등가회로를 설계하였으며, 설계된 등가회로를 이용하여 얻은 송신음압감도 (TVR)를 유한요소해석을 통해 도출한 결과와 비교하여 그 타당성을 검증하였다. 등가회로를 이용하여 송신특성을 파악한 결과, 유한요소해석 결과와 일치하였으며, 후면추 고정재료의 강성과 후면추의 질량 변화에 따른 공진 주파수와 송신음압감도 변화를 명확히 파악할 수 있었다. 본 연구에서 도출한 등가회로를 이용하면 설계변수의 변화에 따라 모델을 변경해야하고 긴 계산시간이 요구되는 유한요소해석에 비해 효과적으로 트랜스듀서의 공진특성을 해석할 수 있다.

Optimized Design of Low Voltage High Current Ferrite Planar Inductor for 10 MHz On-chip Power Module

  • Bae, Seok;Hong, Yang-Ki;Lee, Jae-Jin;Abo, Gavin;Jalli, Jeevan;Lyle, Andrew;Han, Hong-Mei;Donohoe, Gregory W.
    • Journal of Magnetics
    • /
    • 제13권2호
    • /
    • pp.37-42
    • /
    • 2008
  • In this paper, design parameters of high Q (> 50), high current inductor for on-chip power module were optimized by 4 Xs 3 Ys DOE (Design of Experiment). Coil spacing, coil thickness, ferrite thickness, and permeability were assigned to Xs, and inductance (L) and Q factor at 10 MHz, and resonance frequency ($f_r$) were determined Ys. Effects of each X on the Ys were demonstrated and explained using known inductor theory. Multiple response optimizations were accomplished by three derived regression equations on the Ys. As a result, L of 125 nH, Q factor of 197.5, and $f_r$ of 316.3 MHz were obtained with coil space of $127\;{\mu}m$, Cu thickness of $67.8\;{\mu}m$, ferrite thickness of $130.3\;{\mu}m$, and permeability 156.5. Loss tan ${\delta}=0$ was assumed for the estimation. Accordingly, Q factor of about 60 is expected at tan ${\delta}=0.02$.

Altered Functional Disconnectivity in Internet Addicts with Resting-State Functional Magnetic Resonance Imaging

  • Seok, Ji-Woo;Sohn, Jin-Hun
    • 대한인간공학회지
    • /
    • 제33권5호
    • /
    • pp.377-386
    • /
    • 2014
  • Objective: In this study, we used resting-state fMRI data to map differences in functional connectivity between a comprehensive set of 8 distinct cortical and subcortical brain regions in healthy controls and Internet addicts. We also investigated the relationship between resting state connectivity strength and the level of psychopathology (ex. score of internet addiction scale and score of Barratt impulsiveness scale). Background: There is a lot of evidence of relationship between Internet addiction and impaired inhibitory control. Clinical evidence suggests that Internet addicts have a high level of impulsivity as measured by behavioral task of response inhibition and a self report questionnaire. Method: 15 Internet addicts and 15 demographically similar non-addicts participated in the current resting-state fMRI experiment. For the connectivity analysis, regions of interests (ROIs) were defined based on the previous studies of addictions. Functional connectivity assessment for each subject was obtained by correlating time-series across the ROIs, resulting in $8{\times}8$ matrixs for each subject. Within-group, functional connectivity patterns were observed by entering the z maps of the ROIs of each subject into second-level one sample t test. Two sample t test was also performed to examine between group differences. Results: Between group, the analysis revealed that the connectivity in between the orbito frontal cortex and inferior parietal cortex, between orbito frontal cortex and putamen, between the orbito frontal cortex and anterior cingulate cortex, between the insula and anterior cingulate cortex, and between amydgala and insula was significantly stronger in control group than in the Internet addicts, while the connectivity in between the orbito frontal cortex and insula showed stronger negative correlation in the Internet addicts relative to control group (p < 0.001, uncorrected). No significant relationship between functional connectivity strength and current degree of Internet addiction and degree of impulsitivy was seen. Conclusion: This study found that Internet addicts had declined connectivity strength in the orbitofrontal cortex (OFC) and other regions (e.g., ACC, IPC, and insula) during resting-state. It may reflect deficits in the OFC function to process information from different area in the corticostriatal reward network. Application: The results might help to develop theoretical modeling of Internet addiction for Internet addiction discrimination.

양극산화 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구 (ON THE SURFACE CHARACTERISTICS AND STABILITY OF IMPLANT TREATED WITH ANODIZING OXIDATION)

  • 김원상;조인호
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.549-560
    • /
    • 2006
  • Purpose : This experiment examined the effects of anodization on commercially pure titanium implant fixtures. Material & methods : The implant fixtures were anodized at three different voltage levels, producing three different levels of oxidation on the surface of the fixure. Implant were divided into four groups according to the level of oxidation. Group 1 consist of the control group of machined surface implants, Group 2 implants were treated by anodizing to 100 voltage, Group 3 implants were treated by anodizing oxidation to 200 voltage Group 4 implants were treated by anodizing oxidation to 350 voltage. Surface morphology was observed by Scanning Electron Microscope(SEM) and the surface roughness was measured using NanoScan $E-1000^{\circledR}$. Implantation of the fixtures were performed using New Zealand white rabbits. $Periotest^{\circledR}$ value(PTV) resonance frequency analysis(RFA), and removal torque were measured in 0, 2, 4, 8, 12 weeks after implantation. Results : The results of the study were as follows: 1. Values for the measured surface roughness indicate statistically significant differences in Ra, Rq, and Rt values among group 1, 2, 3, and 4 at the top portion of the thread,(p<0.05) while values at the base of the threads indicated no significant difference in these values. 2. A direct correlation between the firming voltage, and surface roughness and irregularities were observed using scanning electron microscope. 3. No statistically significant differences were found between test groups regarding $Periotest^{\circledR}$ values. 4. Analysis of the data produced by RFA, significant differences were found between group 1 and group 4 at 12 weeks after implantation.(p<0.05) Conclusions : In conclusion, no significant differences could be found among test groups up to a certain level of forming voltage threshold, beyond this firming voltage threshold, statistically significant differences occurred as the surface area of the oxide layer increased with the increase in surface porosity, resulting in enhanced bone response and osseointegration.

불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용 (Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes)

  • 한정삼;곽병만
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.