DOI QR코드

DOI QR Code

Analysis of the Resonant Characteristics of a Tonpilz Transducer with a Fixed Tail Mass by the Equivalent Circuit Approach

등가회로를 이용한 후면추 고정형 Tonpilz 트랜스듀서의 공진 특성 해석

  • Received : 2011.05.20
  • Accepted : 2011.07.26
  • Published : 2011.08.31

Abstract

In this paper, the resonant characteristic of a Tonpilz transducer with a fixed tail mass has been studied by means of an equivalent circuit approach. An equivalent circuit has been designed to describe the characteristic of a Tonpilz transducer that has an additional resonance because of its fixed tail mass. The transmitting voltage response of the transducer calculated by the designed circuit has been compared with that by the FEA (finite element analysis) to confirm the validity of the circuit. This equivalent circuit approach produces identical results with the FEA, in which the variation of resonant frequencies and TVR has been clearly figured out in relation to the stiffness of the mounting fixture and the mass of the tail mass. The suggested equivalent circuit can be utilized to figure out the characteristics of the Tonpilz transducer more efficiently than FEA that requires much calculation time and revision of the models in accordance with the variation of design variables.

본 논문에서는 후면추가 탄성체에 의해 고정된 Tonpilz 트랜스듀서의 공진 특성을 등가회로를 이용하여 연구하였다. 후면추가 고정됨으로 인해 발생하는 추가적인 공진특성을 나타낼 수 있는 등가회로를 설계하였으며, 설계된 등가회로를 이용하여 얻은 송신음압감도 (TVR)를 유한요소해석을 통해 도출한 결과와 비교하여 그 타당성을 검증하였다. 등가회로를 이용하여 송신특성을 파악한 결과, 유한요소해석 결과와 일치하였으며, 후면추 고정재료의 강성과 후면추의 질량 변화에 따른 공진 주파수와 송신음압감도 변화를 명확히 파악할 수 있었다. 본 연구에서 도출한 등가회로를 이용하면 설계변수의 변화에 따라 모델을 변경해야하고 긴 계산시간이 요구되는 유한요소해석에 비해 효과적으로 트랜스듀서의 공진특성을 해석할 수 있다.

Keywords

References

  1. 김진욱, 김원호, 조치영, 노용래, "후면추 고정형 Tonpilz 트랜스듀서의 공진 특성 연구," 한국음향학회지, 29권, 7호, 439-447쪽, 2010.
  2. O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Peninsulr Publishing, Los Altos, Chap. 2 and 6, 1988.
  3. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound, Springer, New york, Chap. 3 and 7, 2007.
  4. D. Church and D. Pincock, "Predicting the electrical equivalent of piezoceramic transducers for small acoustic transmitters," IEEE Trans. Sonics Ultrason., vol. SU-32, no. 1, pp. 61-64, 1985.
  5. 조치영, 서희선, 이정민, "수중 음향 압전 트랜스듀서의 등가회로 모델링," 한국음향학회지, 15권, 4호, 77-82쪽, 1996.
  6. R. Ramesh and D. D. Ebenezer, "Equivalent circuit for broadband underwater transducers," IEEE Trans. U.F.F.C., vol. 55, no. 9, pp. 2079-2083, 2008.
  7. 이정민, 이병화, 백광렬, "미립자 집단 최적화 알고리즘을 이용한 다중모드 수중 음향 압전 트랜스듀서의 등가회로 모델링," 한국음향학회지, 28권, 4호, 363-369쪽, 2009.
  8. M. V. Crombrugge and W. Thompson, Jr., "Optimization of the transmitting characteristics of a Tonpilz-type transducer by proper choice of impedance matching layers," J. Acoust. Soc. Am., vol. 77, no. 2, pp. 747-752, 1985. https://doi.org/10.1121/1.392344
  9. H. A C Tilmans, "Equivalent circuit representation of electromechanical transducers: I. lumped-parameter sysytems," J. Micromech. Microeng., vol. 6, pp. 157-176, 1996. https://doi.org/10.1088/0960-1317/6/1/036
  10. J. L. Butler, J. R. Cipolla and W. D. Brown, "Radiating head flexure and its effect on transducer performance," J. Acoust. Soc. Am., vol. 70, no. 2, pp. 500-503, 1981. https://doi.org/10.1121/1.386794
  11. S. C. Butler, "Triply resonant broadband transducers," Oceans '02 MTS/IEEE, vol. 4, pp. 2334-2341, 2002.
  12. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th ed., John Wiley and Sons, New york, 2000.

Cited by

  1. Design and Fabrication of Multi-mode Wideband Tonpilz Transducers vol.32, pp.3, 2013, https://doi.org/10.7776/ASK.2013.32.3.191